Practical Global Illumination
with Irradiance Caching




Synthesis Lectures on Computer

Graphics and Animation

Editor
Brian A. Barsky, University of California, Berkeley

Practical Global Illumination with Irradiance Caching
Jaroslav Kfivinek and Pascal Gautron

2009

Wang Tiles in Computer Graphics
Ares Lagae
2009

Virtual Crowds: Methods, Simulation, and Control
Nuria Pelechano, Jan M. Allbeck, Norman 1. Badler
2008

Interactive Shape Design
Marie-Paule Cani, Takeo Igarashi, Geoff Wyvill
2008

Real-Time Massive Model Rendering
Sung-eui Yoon, Enrico Gobbetti, David Kasik, Dinesh Manocha
2008

High Dynamic Range Video
Karol Myszkowski, Rafal Mantiuk, Grzegorz Krawczyk
2008

GPU-Based Techniques for Global Illumination Effects
Liészl6 Szirmay-Kalos, Liszl6 Szécsi, Mateu Sbert
2008

High Dynamic Range Image Reconstruction
Asla M. Sa, Paulo Cezar Carvalho, Luiz Velho
2008



High Fidelity Haptic Rendering
Miguel A. Otaduy, Ming C. Lin
2006

A Blossoming Development of Splines
Stephen Mann
2006

iii




Copyright © 2009 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Practical Global Illumination with Irradiance Caching
Jaroslav K¥ivinek and Pascal Gautron

www.morganclaypool.com

ISBN: 9781598296440 paperback
ISBN: 9781598296457 ebook

DOI 10.2200/S00180ED1V01Y200903CGR010
A Publication in the Morgan & Claypool Publishers series

SYNTHESIS LECTURES ON COMPUTER GRAPHICS AND ANIMATION

Lecture #10
Series Editor: Brian A. Barsky, University of California, Berkeley

Series ISSN
Synthesis Lectures on Computer Graphics and Animation
Print 1933-8996  Electronic 1933-9003



Practical Global Illumination
with Irradiance Caching

Jaroslav Kfivanek
Cornell University and Charles University, Prague

Pascal Gautron

Thomson Corporate Research, France

SYNTHESIS LECTURES ON COMPUTER GRAPHICS AND ANIMATION #10

1\@ MORGAN CLAYPOOL PUBLISHERS



ABSTRACT

Irradiance caching is a ray tracing-based technique for computing global illumination on diffuse surfaces.
Specifically, it addresses the computation of indirect illumination bouncing off one diffuse object onto
another. The sole purpose of irradiance caching is to make this computation reasonably fast. The main
idea is to perform the indirect illumination sampling only at a selected set of locations in the scene, store
the results in a cache, and reuse the cached value at other points through fast interpolation.

This book is for anyone interested in making a production-ready implementation of irradiance
caching that reliably renders artifact-free images. Since its invention 20 years ago, the irradiance caching
algorithm has been successfully used to accelerate global illumination computation in the Radiance lighting
simulation system. Its widespread use had to wait until computers became fast enough to consider global
illumination in film production rendering. Since then, its use is ubiquitous. Virtually all commercial and
open-source rendering software base the global illumination computation upon irradiance caching.

Although elegant and powerful, the algorithm in its basic form often fails to produce artifact-free
images. Unfortunately, practical information on implementing the algorithm is scarce. The main objective
of this book is to expose the irradiance caching algorithm along with all the details and tricks upon which
the success of its practical implementation is dependent. In addition, we discuss some extensions of the
basic algorithm, such as a GPU implementation for interactive global illumination computation and
temporal caching that exploits temporal coherence to suppress flickering in animations.

Our goal is to expose the material without being overly theoretical. However, the reader should
have some basic understanding of rendering concepts, ray tracing in particular. Familiarity with global
illumination is useful but not necessary to read this book.

KEYWORDS

computer graphics, realistic image synthesis, rendering, global illumination, irradiance
caching, GPU
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Preface

The process of generating, or rendering, images is a central topic of computer graphics. The key for
assessing the quality of computer-generated images is their plausibility since synthetic images often have
to be seamlessly integrated with real environments or have to look as if the content was real. Accurate
simulation of light interacting with a scene is an important aspect in generating plausible images. This
particularly involves computing global illumination that is simulating multiple reflections of light in the
scene.

Lighting simulation has been an intense research area for several decades. Starting with studies
on radiative transfer in the 80s, many methods have been proposed and tried, and are under continuous
improvement both in the academic research and industry. However, while the main ideas are not difficult to
understand, the methods for the actual computation of light transport usually present a tradeoff between
speed and simplicity. Simple and robust methods are slow and faster techniques (such as irradiance
caching) usually involve more complex algorithms and/or data structures. Furthermore, the limitations of
the various methods are generally not extensively described in the related publications. As a result, each
programmer has to find his or her own ways to uncover non-described aspects of the algorithm, and solve
open issues to obtain an actually working piece of software. This systematic, repeated additional work
yields an important waste of effort, and the related improvements often remain buried within the code
with /* This division by pi makes sense */ or similar comments.

To overcome this problem, this book provides extensive details on a particular method for accel-
erating lighting simulation, irradiance caching. Starting with a description of the fundamental principles
of the algorithm, the book covers both theoretical and practical aspects of irradiance caching. Besides
mathematical demonstrations, important aspects are discussed using pseudocode based on actual imple-
mentations of irradiance caching.

Since the invention of the irradiance caching algorithm in 1988, a number of additional research
works addressed its robustness and efficiency. Also based on actual implementations, the book contains a
theoretical and practical description of some relevant improvements. Solutions to some common problems
encountered during implementation are also proposed.

This book is for anyone who aims at obtaining an actually working implementation of irradiance
caching. Note that the reader is assumed to have a working knowledge of mathematics and computer
graphics for a thorough understanding. However, we pay special attention to the accessibility of the
book and provide the basic required theoretical aspects so that the book can be used as a standalone
implementation reference.

WHAT IS AND WHAT IS NOT IRRADIANCE CACHING?

Irradiance caching is a ray tracing-based technique for computing global illumination on diffuse surfaces.
Specifically, it addresses the computation of indirect illumination bouncing off one diffuse object onto
another. The purpose of irradiance caching is to make this computation reasonably fast.

Although physically-based, irradiance caching does not provide an unbiased solution. This is rather
a theoretical than a practical problem since the solution is usually indistinguishable from the reference.
Another limitation of irradiance caching is its degraded performance in geometrically complex scenes,
such as foliage. Indeed, irradiance caching delivers best performance in scenes with not much clutter.
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Last but not least, irradiance caching only addresses diffuse to diffuse interreflections. It is of no use for
computing global illumination effects involving specular surfaces.

CHAPTER OVERVIEW

The first chapter provides a general introduction to rendering and physically-based lighting simulation.
Basic principles of global illumination computation are presented together with their implementation
using ray tracing.

Chapter 2 introduces the core of irradiance caching. First, the computation of irradiance and
irradiance gradients is detailed. Then, we describe the actual irradiance caching algorithm for reusing
computed irradiance values. Several formulas and heuristics are provided to improve the rendering quality.
The chapter also discusses the data structure, based on an octree, used to store and fetch irradiance values.

While the irradiance caching algorithm is highly efficient in general, pathological cases may happen
frequently especially in the context of production rendering. Chapter 3 provides solutions to such common
practical issues. These include the scheme for populating the irradiance cache, as well as the handling
of geometric complexity due to bump maps, hair or grass. The chapter also addresses the combination
of motion blur with irradiance caching, and the use of irradiance caching for fast ambient occlusion
calculation.

As the irradiance caching algorithm does not consider all possible interactions between light and
matter, Chapter 4 presents how this algorithm can be integrated within a full global illumination system
featuring support for nondiffuse surfaces. The combination with Monte Carlo path tracing and photon
mapping will particularly be addressed.

Current graphics processors (GPUs) are generally more powerful than classical processors, as long
as their computational model is respected. As the original irradiance caching algorithm cannot be easily
implemented on graphics processors, Chapter 5 presents a reformulation of the algorithm meeting the
constraints of the GPU. This method especially demonstrates high performance for the computation of
one-bounce global illumination.

Generally, the rendering of an animation segment considers all the frames of the animation sep-
arately, and performs a separate lighting simulation for each of them. To avoid wasting computation
resources, Chapter 6 introduces a solution for reducing the cost of animation rendering by leveraging the
temporal coherence of indirect lighting.
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CHAPTER 1

Introduction to Ray Tracing and
Global ITlumination

Our visual perception of reality is due to the light entering our eyes. But before the light reaches the eyes on
its way from the light source, it is usually reflected or refracted many times off object surfaces. In computer
graphics, we refer to the light bouncing around in a scene as global illumination. Depending on the objects’
reflective material characteristics, global illumination creates a wide range of visual phenomena, some of
which are shown in Figure 1.1.

In this book, we focus on the computation of one of these phenomena, referred to as diffise
interreflections (i.e. light that is reflected diffusely several times before reaching the eyes). Diffuse in-
terreflections create an effect known as color bleeding, where one diffuse object “borrows” its color from
another. Diffuse interreflections are also responsible for most illumination in interiors (walls reflect light
diffusely) and for smooth illumination gradations. The very purpose of the irradiance caching algorithm,
described in this book, is to make the computation of diffuse interreflections fast.

This book deals with image rendering, a process that takes a scene description (geometry, materials,
light sources, camera) and turns it into an image. We may want to render photo-realistic images, i.e. images
that look like a photograph of reality, or create a stylized look for a particular artistic or technical purpose.
At any rate, to achieve a certain level of plausibility, it is beneficial to approach the rendering problem
as lighting simulation, i.e. calculation of light traveling in a scene. This approach is often referred to as
physically-based rendering.

This chapter presents general concepts of rendering and lighting simulation for the purpose of the
book, without paying much attention to rigorousness. More theoretical details are provided in the books
by Glassner [G1a95] and Dutré etal. [DBBO06]. Practical issues of an implementation of a physically-based
ray tracer can be found in the book [PHO04]. A general introduction to ray tracing is given in [G1a89].
Mathematical tools and formulas for lighting simulation are summarized in [Dut03]. Appendix A gives
a concise overview of spherical geometry, probability, and Monte Carlo integration.

1.1 BASICRADIOMETRIC QUANTITIES

Radiometry is the field that studies the measurement of electromagnetic radiation, including visible light.
See [CW93] for a computer graphics oriented introduction to radiometry. In the context of this book,
three basic quantities are discussed: the flux, radiance, and irradiance.

Flux 'The radiant flux ®, measured in Watts [W ], is the total amount of radiant energy (imagine number
of photons) passing through a surface of interest per unit time:

do
d=—.
dr
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(c) caustics

Figure 1.1: Globalillumination causes different visual phenomena depending on the objects’s reflectance
properties. In this book, we focus on the computation of diffuse interreflections, where light reflects diffusely
multiple times before reaching the eye.

Irradiance 'The irradiance E, expressed in W.m™2, is the incident flux per unit area:

d®(p)

Ep ==

Irradiance describes the spatial density of radiation incident at a surface, regardless of the direction from
which the radiation arrives. The value of irradiance depends on the orientation of the surface element
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dA. In particular, only the light incident from the upper hemisphere H " around the surface normal at p
contributes to irradiance at p.

Radiance 'The radiance L localizes flux in space and direction. It is the flux per unit projected area, per
unit solid angle:
Pop,w)  dE(p, o)
L ) = = )
. «) dAdw cos®  dw cos6

where dw is a differential solid angle, and 6 is the angle between the surface normal and the direction w.
The cosine term cos 6 makes the value of radiance independent of the mutual orientation of the surface
element dA and the direction of flux w, since it projects dA into w.

Irradiance can then be expressed in terms of radiance as:

E(p) =/ L(p, w)cos 6 dw, (1.1)
H+

where HT is the upper hemisphere centered on the surface normal at p.

1.2 RENDERING GOAL: FIND RADIANCE

Our goal in image rendering is to compute the color of each pixel in the image. In terms of lighting
simulation, we want to calculate how much light is reflected from the objects visible through pixels
towards the virtual camera.

We use the radiometric quantity radiance L(p, w) to measure the “amount of light” reaching or
leaving point p in direction w. Two fundamental properties make radiance the most important quantity
in lighting simulation:

* The response of the eye or a camera film is proportional to radiance. This is why our goal in rendering is
to compute radiance.

* Radiance is constant along straight lines in space. This is why we express the amount of light carried
by a ray in terms of radiance.

We distinguish the outgoing radiance L,(p, w), describing light leaving the point p along w, and the
incoming radiance L;(p, w), which refers to light incident at p.

To summarize, our goal in physically-based image rendering is to determine the outgoing radiance
Lo(p, w,) for every surface point p visible through image pixels, in the outgoing direction w, pointing
from p towards the virtual camera (see Figure 1.2).

The outgoing radiance is the sum of the radiance emitted by the surface that p lies on (in case p
is on an area light source), L., and the radiance due to light reflection, L,:

Lo(P7 w,) = Le(P9 w,) + Lr(Pv o).

The self emission L¢(p, w,) is easily determined, since it is given in the scene database. In what follows,
we focus on the reflected radiance L. (p, w,).
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Lo(p27 (’00,2)

Figure 1.2: Our goal in physically-based image rendering is to determine the outgoing radiance
Lo(p, w,) for every surface point p visible through image pixels, in the outgoing direction w, point-
ing from p towards the virtual camera.

1.3 RAYTRACING

Ray tracing [G1a89, P1104] is a particularly simple algorithm for image rendering. For each pixel, we
set up a ray! that originates at the center of projection and passes through the pixel. The nearest of the
intersections of this ray with objects in the scene is the point visible through that pixel. For each of the
points, the Shade() procedure, discussed later, computes the color to be assigned to the pixel. The image
rendering procedure using ray tracing is summarized in Algorithm 1.

In a naive approach, the nearest intersection is found by testing the intersection of the ray with
each object and choosing the one closest to the ray origin (Figure 1.3(a)). To accelerate the intersection
procedure, a spatial data structure, such as a bounding volume hierarchy (BVH) or a kd-tree, is used to
quickly cull away objects that cannot be intersected by a given ray (Figure 1.3(b)).

Ray tracing is of particular importance for us since it is at the heart of irradiance caching. However,
in film production rendering, it is more common to use rendering algorithms based on the REYES archi-
tecture [CCC87], which is for example the basis of PrMan, Pixar’s implementation of the RenderMan
standard [Ups90]. In REYES, the geometry of the scene is tesselated into small quadrilaterals, called
micropolygons, the projected size of which is smaller than a pixel. Each micropolygon is then shaded,
and the visibility is solved using a variant of the z-buffer algorithm. z-buffer is also used to solve the
visibility on the GPU. Nevertheless, no matter what particular rendering algorithm is used, there is always
a Shade() procedure that calculates the color (i.e. outgoing radiance) for a point on an object surface.

1.4 SHADING, REFLECTANCE, AND THE BRDF

The shading calculation is what determines the object appearance in the rendered image. For improved
flexibility, the shading in many rendering systems is programmable through so called shaders (for example
RSL shaders in RenderMan or GPU vertex/pixel shaders). A shader simply receives all the information

1A ray is a half line defined by its origin and direction.
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v
- - A

(a) Naive ray tracing (b) Accelerated ray tracing

Figure 1.3: Naive ray tracing performs ray/geometry intersections with all the objects of the scene (a).
Using an acceleration data structure based on space partitioning, the nearest intersection is obtained far
more efficiently by culling objects that cannot be intersected by a given ray.

about the point being shaded (position, normal, viewing direction, material properties, etc...) and computes
the resulting “color”, or, in the terminology of physically-based rendering, the outgoing radiance L.

As shown in Figure 1.4, the appearance of an object depends on its reflectance characteristics.
In computer graphics, we use shading models to describe reflectance. Some of the common reflectance

models include Lambertian (for purely diffuse objects), Phong or Blinn (add specular highlights). A

Algorithm 1 Image rendering with ray tracing.

procedure RayTraceImage
for all pixels (i, j) in the image do
dir <« direction from camera position to pixel (i, j)
ray < [cameraPos, dir] > Ray from camera through pixel (i, )
image[i, j] < Trace(ray)
end for
end procedure

function Trace(ray) > Determine radiance for a given ray
hitInfo < Intersect(ray) > Find the nearest intersection
if hitInfo.object # NULL then
return Shade(hitInfo, ray) > Calculate radiance
else
return Background(ray) > Use background if no hit
end if

end function
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¥

Figure 1.4: Appearance of objects depends on their reflectance characteristics. All the spheres are il-
luminated by the same lighting environment, only their material reflectance differs. (Image courtesy of

Wojciech Matusik.)

shading model is a mathematical abstraction that describes an object’s response to incoming light. In
practice, it is expressed in terms of a formula that calculates light intensity at a point.

In physically-based rendering, the equivalent of the shading model is the bi-directional reflectance
distribution function or the BRDF, usually denoted f. At a given point, the BRDF is a function of two
directions, the incoming j; and the outgoing w, (Figure 1.5). It is defined as the ratio between the
reflected outgoing radiance L, and the differential irradiance E:

dL. (o) _ dL.(wo)
dE(wi) - Li(wi) COS Qi dwi ’

Sr(wi, o) = (1.2)

where Lj; is the incoming radiance and 6; is the angle between the incoming light direction w; and the
surface normal at the point where the BRDF is evaluated. Think of the BRDF as the percentage of the
light coming from w; that gets reflected towards w,.

The cosine term cos 6; deserves a special attention since it keeps appearing in most of our formulas.
Imagine a flashlight shining on a surface. As we rotate the flashlight away from the surface normal, the
brightness (which is our perception of the reflected radiance) of a fixed point on the surface decreases,
even though the incoming radiance remains the same (see Figure 1.6). This is quite logical, since the
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Figure 1.5: The BRDF at a point p gives the percentage of the radiance coming from the incoming
direction w; that is reflected towards the outgoing direction w,.

photons emitted by the flashlight spread over a larger area, so their density at any given point will be
lower. The decrease in reflected radiance is inversely proportional to the area illuminated by the flashlight,
i.e. exactly cos 6;. This decrease of reflected radiance is exclusively due to the geometric configuration and
has nothing to do with the reflectance properties of the surface. This is why the cosine term cos 6; was
introduced in the definition of the BRDF to factor out this purely geometric effect.

4

.

area proportional to 1/ cos 6,
brightness proportional to cos 6,

Figure 1.6: Decrease in brightness (i.e. the reflected radiance) is proportional to the cosine term cos 6;,

irrespective of the surface reflectance properties. That is why the cosine term is factored out in the
definition of the BRDF.

Many BRDF models have been devised to describe different material types. Among those, common
BRDFs include Lambert model for diffuse surfaces, Phong/Blinn [Pho75] for glossy reflections, or
Ward [War92] for anisotropic materials. Fixing the incident direction wj, the BRDF is a function of only
the outgoing direction w, (and vice-versa). We often refer to the BRDF for a fixed w; or @, as the BRDF
lobe. Figure 1.7 shows a plot of BRDF lobes for the aforementioned BRDFs.
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Figure 1.7: Renderings and plots of common BRDF models.
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glossy / specular component diffuse component

Figure 1.8: Many real-world BRDF have distinct diffuse and specular/glossy components. For some
BRDFs, on the other hand, the ideal diffuse component may not be present at all. (Images courtesy Addy

Ngan.)
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Most of the materials in the real world tend to reflect light in specific directions, yielding view-
dependent effects. That is to say, what we see on an object depends on where we look at it from. Such
surfaces are generally characterized as more or less specular or glossy depending on this tendency.

A special case of the view-dependent reflection is ideal (perfect) specular reflection. Given the incident
direction, there is only a single outgoing direction that the light is reflected to. In other words, the BRDF
lobe is zero except for one single direction. This is how a mirror reflects light.

When the surface tends to reflect the light uniformly in every direction, this surface is called diffuse.
For an ideal diffuse surface, also called Lambertian, the BRDF is a constant function,

Pd
Sr(wi, o) = —,
T

where pg € [0, 1] is called the diffuse reflectivity of the material. This is what we perceive as the surface
color.

Many real-world materials feature both the specular/glossy and diffuse reflections, as shown in
Figure 1.8. For practical purposes, we usually model such BRDFs as a sum of components: diffuse and
glossy or ideal specular. This allows us to use different algorithms to solve illumination due to each of the
components. For example, irradiance caching only applies to the diffuse component of a BRDEF.

1.5 DIRECT AND INDIRECT ILLUMINATION

Now we know how light is reflected when it arrives at a surface but we still have not discussed where
the light actually comes from. First, direct i/lumination is due to the light that comes directly from the
light sources (Figure 1.9(a,b)). However, light arrives also indirectly, after multiple reflections on other
scene surfaces; this light produces indirect illumination (Figure 1.9(c,d)). The sum of direct and indirect
illumination is global illumination:

global illumination = direct illumination + indirect illumination.

In this book, we focus on the computation of indirect illumination on diffuse surfaces.

1.5.1 DIRECT ILLUMINATION

In the case of direct illumination we know that the light comes from the light sources and we know exactly
where they are located and how much light they emit (this information is given in the scene database).
This makes direct illumination computation simple. Just iterate over the lights, multiply the incoming
radiance due to each light by the BRDF and the cosine term to turn it into the corresponding reflected
radiance, and sum it all together:

#lights

LI (p.wo) = Y Lis(p: 014) fr(ps ik 00) €08 b;
k=1

In the above formula, we have explicitly used p as one of the BRDF parameters since in general each
point in the scene may have a different BRDF.

Naturally, light sources that are occluded by other scene objects do not contribute to the direct
illumination since the occluding objects cast shadows. In ray tracing, the shadow computation involves
testing the intersection of a shadow ray from p to the light source with scene objects (Figure 1.9(a)).
If an intersection is detected, the light does not contribute to direct illumination. Algorithm 2 gives a
pseudocode for direct illumination computation with shadows using ray tracing.
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Figure 1.9: Direct illumination is due to the light reaching the observed point p directly from the light
sources. In ray tracing, it can be computed by looping over the light sources and testing for occlusion
using the shadow rays. In (a), light source L is occluded while source Ly contributes to the illumination
at p. However, in reality, light reaches p also after multiple reflections in the scene, yielding indirect
illumination (c).

1.5.2 INDIRECT ILLUMINATION

1.5.2.1 Ideal Specular Reflections

Given the outgoing (or viewing) direction w,, there is a single direction w; from which the light is reflected
by the ideal (perfect) specular reflection. This makes the computation of indirect illumination on an ideal
specular surface simple. We cast a secondary ray in the direction of specular reflection. The outgoing
radiance computed at the point where the secondary ray hits the scene gives us the indirect illumination.
To compute this outgoing radiance, ray tracing is applied recursively as shown in Algorithm 3. (The



1.5. DIRECT AND INDIRECT ILLUMINATION 11

Direct illumination only Global = direct + indirect

Figure 1.10: Another example of the difference between the direct and global illumination.

coefficient k, in the algorithm is a surface property that gives the percentage of light reflected by specular
reflection. In reality, &, is the function of w, as described by the Fresnel equations [P1104]. In practice,
however, it is often set directly by the user.)

Algorithm 2 Direct illumination in ray tracing.

function DirectIllumination(hitInfo, incidentRay)
w, < —incidentRay.direction > W, points away from the surface
p < hitlnfo.position
L, <0
for all light sources k do
w; < direction from p to light source k
Lix < Lix(p, @i k) fr(ps Wik, o) cOSO; &
if ||L; k]l > O then > shadow test only for non-zero contributions
shadowRay <« [p, o «]
maxDist < distance from p to light k
if not HasIntersection(shadowRay, maxDist—¢) then
Ly+=Lyg > use contribution if not shadowed
end if
end if
end for
return L,
end function
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Algorithm 3 Specular reflection using recursive ray tracing.

function SpecularReflection(hitInfo, incidentRay)
w, < —incidentRay.direction > W, points away from the surface

p < hitlnfo.position
w; < ReflectedDirection(hitInfo, w,)
secondaryRay < [p, w;]
return k- Trace(secondaryRay)
end function

1.5.2.2 General BRDFs: Distribution Ray Tracing

In the case of a general BRDE, the situation is more complicated than for an ideal specular reflection
since the light from the whole hemisphere of incoming directions w; can be reflected towards an outgoing
direction w,. However, we can still use tracing of secondary rays to determine indirect illumination. We
generate a number of random directions on the hemisphere according to a selected probability distribution
and cast secondary rays in these directions. The outgoing radiance computed at the hit point of each
secondary ray gives us the incoming radiance from the respective direction. The total reflected radiance
is then computed using a simple average:

: (1.3)

N
pinditect(p g0y = % Z L; x(p, wik) fr (([;wl)k wo) c0s b 1
k=1 P \w; k

where

N is the number of samples, i.e. secondary rays,
w; k 1s the kth random sample direction, and
p(wi. 1) is the value of the probability density function (PDF) for generating random direction wj .

In short, we estimate the reflected radiance by sampling the incoming radiance field. Each of the samples
corresponds to casting a secondary ray. Algorithm 4 gives a pseudocode for the indirect illumination
computation.

Since we distribute the secondary rays over the hemisphere, the technique is often referred to as
distribution ray tracing. Its other name, stochastic ray tracing, follows from the stochastic nature of the
algorithm: the secondary rays are cast in random directions. Yet another name for the same thing, Monte
Carlo ray tracing, stems from the fact that we are using Monte Carlo integration, as becomes clear shortly.

Due to the stochastic nature of distribution ray tracing we can see noise in the resulting images.
The noise can be reduced by increasing the number of samples. However, it only decreases with the square
root of the number of samples: To reduce noise twice, we need four times as many rays (see Figure 1.11).

A more effective way of reducing the noise is importance sampling. Consider computing indirect
illumination on a glossy surface. Since there is a strong tendency to reflect light only in some directions,
we cast the rays preferably in those directions (see Figure 1.12). In other words, the probability density
function (PDF) for generating the random directions is proportional to the BRDF lobe (for the given
fixed outgoing direction). Importance sampling can reduce noise without casting extra rays.

However, importance sampling is not very effective on diffuse surfaces, since the light is reflected
almost equally from all directions. Therefore, noise reduction requires increasing the number of secondary
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Algorithm 4 Indirect illumination using distribution (stochastic) ray tracing.

function Indirectlllumination(hitInfo, incidentRay, N)
w, < —incidentRay.direction > W, points away from the surface
p < hitlnfo.position
L, <0
for k < 1to N do
[wi k, pdf] <— RandomDirection(hitInfo, w,)
secondaryRay < [p, w; ]
L; < Trace(secondaryRay)
Ly += lﬁ “Lig - fr(p, @ik, o) - cOS6; ¢
end for
return %
end function

rays, which makes the computation very slow. (Usually, we need 100 or more secondary rays per pixel for
noise-free images.)

The irradiance caching algorithm addresses the problem of slow computation of indirect illumina-
tion on diffuse surfaces. The main idea is to perform the costly hemisphere sampling only at a selected set
of locations in the scene, store the results in a cache, and reuse the cached value at other points through
a fast interpolation.

1.6 ILLUMINATION INTEGRAL AND RENDERING
EQUATION

Let us now formalize the reflection of light and indirect illumination computation using the radiometric
terms.

1.6.1 ILLUMINATION INTEGRAL

Considering the definition of the BRDF (1.2), we can write the differential reflected radiance dL, as
dL.(p, o) = fr(p, @i, wo) Li(p, w;) cos O; dw;. To get the total outgoing radiance, we sum the contribu-
tions of the incoming radiance from all directions on the hemisphere, i.e. we integrate over the hemisphere:

L.(p, wo) =/ Li(p, @) fr (p, w;, w,) cos 6; dw;. (1.4)
H+

The above integral is referred to as the reflection equation or the i//umination integral (we use the latter
term in this book). The illumination integral gives us the total reflected radiance at a point given the
incoming radiance from all directions and the BRDF.

Formally, Equation (1.3) is a Monte Carlo estimator for numerical evaluation of the illumination
integral. See Appendix A for a short general introduction to Monte Carlo integration.
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(a) 10 rays/pixel (b) 50 rays/pixel

(c) 100 rays/pixel (d) 500 rays/pixel

Figure 1.11: Noise in distribution ray tracing decreases with the square root of the number of samples

(i-e. rays).

1.6.2 LAMBERTIAN REFLECTION

The use of the ideal diffuse, or Lambertian, BRDF greatly simplifies the lighting simulation. Recall that
the Lambertian BRDF is constant in w; and w,, i.e. f-(p, wi, wo) = pa(p)/7, where pg € [0, 1] is the
diffuse reflectivity. We can now simplify the illumination integral as follows:

Lr(P, w,) =

pa(p) / Li(p, w;) cos 6; dw;
T H+
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Glossy BRDF

Lambertian BRDF

-
Uniform sampling Importance sampling

Figure 1.12: Importance sampling strategy reduces image noise by directing secondary rays where the
BRDF times the cosine term is large. This techniques is very effective for glossy BRDFs (top row).
However, for diffuse BRDFs (bottom row), the noise reduction is low, since light is reflected from all
directions (importance sampling for the Lambertian surface only uses the cosine term).

Using the relation of irradiance and incoming radiance E(p) = [+ Li(p, ®;) cos 6; dw;, we express the
reflected radiance in terms of the irradiance:

Li(p, o) = p"T(‘”

E(p)

Reflection on an ideal diffuse surface is said to be view-independent since the outgoing radiance
is the same in all outgoing (or viewing) directions. The view independence of ideal diffuse reflection is a

15
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strong asset for irradiance caching: a single color value, the irradiance, determines the amount of reflected
light for any viewing direction.

1.6.3 RENDERING EQUATION
The illumination integral expresses the reflected radiance at a point as an integral of incoming radiance
and the BRDF over the hemisphere. However, it does not tell us anything about the incoming radiance
itself.

Using the fact that radiance is constant along straight lines, we have

Li(p, ;) = Lo(isect(p, w;), —w;),

where the function isect(p, w;) returns the nearest intersection of a ray from p in the direction w;. Plugging
back to the illumination integral yields the Rendering Equation [K2j86]:

Lo(p, wo) = Le(p, wo) +/ Lo (isect(p, w;), —a;) fr(p, w;, w,) cos B dw;. (1.5)
H+

Note that we have reintroduced the self-emission L. (p, @, ). Although similar to the illumination integral
in its form, the Rendering Equation has a very different meaning. It expresses radiance at a point and
direction in the scene in terms of radiance at different points and directions in the scene. The unknown,
radiance L, appears on both sides of the equation (which makes it a true integral equation, whereas the
illumination integral is simply a formula for computing the amount of light reflected at a point).

A number of techniques exist to solve the Rendering Equation. The distribution ray tracing adopted
in this book solves the rendering equation as an infinite series of recursive evaluations of the illumination
integral (the recursion is, of course, limited in practice).




CHAPTER 2

Irradiance Caching Core

As described in the previous chapter, a straightforward way to compute indirect illumination at a point
on a diffuse surface is hemisphere sampling: a number of secondary rays are traced and their radiance
contributions are averaged. However, doing so at each visible point is prohibitive, since many rays must
be traced to obtain results free of visible noise.

Irradiance caching decreases the overall cost of indirect illumination computation by performing
hemisphere sampling only at selected points in the scene, caching the results, and reusing the cached
indirect illumination values between these points through interpolation. The algorithm can be summa-
rized as follows:

if interpolation is possible then

reuse cached values through interpolation
else

compute new value and store it in the cache

end if

Figure 2.1: The left image shows a global illumination rendering of a conference hall. The indirect
(RGB) irradiance, shown on the right, tends to change slowly overall, especially on flat surfaces in open
spaces. It changes more rapidly on curved surfaces and in the vicinity of scene geometry. (Images courtesy

of Greg Ward.)

This approach is made possible by the spatial coherence of indirect illumination on diffuse surfaces:
indirect illumination changes quite slowly over surfaces, as illustrated in Figure 2.1.

The indirect illumination “value” stored in the cache is the irradiance, E(p). Since irradiance
describes the total amount of light incident at a point irrespective of its directionality, irradiance caching
is limited to view-independent, purely diffuse (Lambertian) reflection.

17
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The rest of this chapter gives all the details necessary to turn the above simplified procedure into
an actual implementation. In Section 2.1, we start by a detailed description of irradiance calculation
at a point. The same section also covers the computation of irradiance gradients since they are indeed
computed together with a new irradiance value. The gradients substantially improve image quality when
used in interpolation. Once computed, the irradiance and its gradients, along with other information,
such as position, normal, etc. are stored in the cache as a new record.

The true core of irradiance caching is the determination of the records that can be reused at a given
point and the interpolation procedure itself. These issues, discussed in Section 2.2, also imply the details
on the actions taken when constructing a new cache record, as described in the same section.

Fast storage and retrieval of the cache records is a vital part of irradiance caching. The data structures
and algorithms used for this purpose are discussed in Section 2.3. Finally, Section 2.4 summarizes the
algorithm and gives references to particular sub-algorithms and formulas introduced throughout the
chapter.

2.1 INDIRECT IRRADIANCE CALCULATION

Irradiance at a point p with normal n is given by the integral of incoming radiance over the hemisphere:
E(pp) = / Li(p, ®) cosf dw (2.1)
H+

where H is the upper hemisphere above p, L;(p, ) is the incoming radiance reaching p from direction
o. The spherical coordinates of @ are denoted (6, ¢).

Instead of trying to compute the value of this integral exactly, which is anyway impossible in
most practical cases, we estimate it numerically using Monte Carlo stratified importance sampling.
Stratification subdivides the hemisphere into cells and chooses one random direction in each cell (see
Figure 2.2). Secondary rays are traced in these directions, and a shading calculation at the hit points of
these rays returns the incoming radiance samples from which the irradiance is estimated by averaging.
From the point of view of irradiance caching, it does not matter much how exactly the incoming radiance
samples are calculated, so we will postpone the discussion of radiance samples calculation to Section 4.3.
One important thing to keep in mind, though: Since we are estimating indirecs illumination, any light
directly emitted by the intersected object (in case we hit a light source) is not taken into account.

Importance sampling is used to slightly reduce variance of our irradiance estimate. Recall from
Section 1.5.2.2 that importance sampling places more samples where the integrand is large. Since nothing
is & priori known about the incoming radiance in our case, only the cosine term cos 6 from the irradiance
integral (2.1) is used as the importance function, i.e. samples are more likely to be placed around the
surface normal (where cos 6 = 1) than near the tangent plane (where cos 8 = 0). The cosine-proportional
sampling strategy is equivalent to distributing samples uniformly on the projection of the hemisphere on
the tangent plane. This is why the cells due to stratification all have the same area in the projection (see
Figure 2.2).

Formally, we draw the samples from a distribution with the probability density function (PDF)
given by:

cos b

p0,¢) = .
T
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L N — ) )
A ey
e ,»""Zk - X > 7

Figure 2.2: Hemisphere sampling for indirect irradiance estimation. Stratification divides the hemi-
sphere into cells and generates one sample in each cell. The cells projected to the tangent plane all have

the same area.

The division by 7 makes the function integrate to 1 on the hemisphere, which is a general requirement
on any probability density. The general form of the stratified Monte Carlo estimator is:

1S Nz‘l F 6k b))
0 im0 POik: Bjik)
where f is the integrand and p the PDF for drawing samples. In our case f (6, ¢) = L(0, ¢) cos0 and
P8, ¢) = ¢ which yields the final irradiance estimator:

T

E(p)~ — Ljk, (2.2)
i=0 k=0

=

where

L i is the incoming radiance sample computed by tracing a ray in the direction

J+¢is 2nk+§,%k)

7 N (2.3)

OjrsPjk) = (arccos 1—
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In cartesian coordinates

: Ik k63
Xjk = sinfjrcosdjr = — cos2m —
: : Ik o kG
Vjx = sinfjgsing;r = T sin 2 —
j+¢!
Zjk = cosbjk = 1= =

(The above formulas distribute the directions proportionally to the cosine term [P104].)
e ]_17 > 51'2, « are two uniformly distributed random numbers in the range [0, 1),

N - M is the total number of sample directions (usually several hundred or thousand). The number of
hemisphere divisions along 6 is denoted M, and N denotes the number of divisions along ¢. To
obtain similar division density along 6 and ¢, it is advisable to choose M and N such that N ~ 7 M.

Weighting of incoming radiance by the cosine term present in the irradiance integral (2.1) is not made
explicit in the estimator (2.2) since the importance sampling strategy implicitly takes care of the cosine
weighting.

(a) hemispherical fisheye view (b) incoming radiance samples

Figure 2.3: (a) A hemispherical fisheye view of a conference room scene from a point on the floor.
(b) Incoming radiance samples generated by our stratified sampling strategy. The light sources appear
dark in (b) since direct light emission from the intersected objects is ignored in indirect illumination

sampling. (Images courtesy of Greg Ward.)

Figure 2.3 (a) shows a conference room scene as seen through a hemispherical fisheye lens from a
point on the floor. Figure 2.3 (b) shows the values for 2000 incoming radiance samples generated by the
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stratified sampling procedure described above. The light sources on the ceiling appear dark since light
emitted directly by the intersected objects is ignored in indirect illumination calculation.

Stratification avoids clumping of many sample directions in small areas which usually reduces
variance of the irradiance estimate compared to purely random sampling without stratification. However,
other sampling strategies, such as quasi-Monte Carlo sampling, may provide more effective variance
reduction [Kel03, MES04]. We stick with simple stratification because it proves to be useful for the
gradient estimation described in the next section.

Illumination-Aware Hemisphere Sampling 'The hemisphere sampling procedure as described so far is
simple but unaware of the illumination in the scene. Ideally, we would like to send more rays in directions
corresponding to the bright parts of the scene or areas with high illumination variance. For that purpose,
Jensen [Jen01] suggests to use importance sampling based on the information stored in a photon map.
The implementation of Radiance uses adaptive sampling: an initial batch of samples is shot, variance of
incident radiance is determined for these samples, and additional samples are shot only in the directions

with high variance [WL598].

2.1.1 IRRADIANCE GRADIENTS

Hemisphere sampling gives us an estimate of irradiance at a point, which is stored in the cache to be
later reused at different locations with different surface normals. If we could predict how the computed
irradiance value changes as we move over a surface or change its orientation, we could obtain more
accurate interpolation results. Ward and Heckbert [VWH92] have shown that a first-order approximation
of the irradiance change, i.e. irradiance gradients, can be estimated directly from the hemisphere samples
with only a negligible additional cost.

Irradiance in a scene is a five-dimensional scalar field (three dimensions for position and two for
surface orientation). In general, gradient of such a field is a five-dimensional vector. For computational
convenience we represent this five-dimensional gradient as two independent three-dimensional vectors:
the rotation and the translation gradients. The two gradients lie in the base plane of hemisphere sampling,
i.e. the tangent plane of the surface, so each of them in fact only represents two degrees of freedom. Note
that there is one gradient vector for each color component.

2.1.1.1 Rotation Gradient
The rotation gradient tells us how irradiance changes with rotation. Consider the example in Figure 2.4 (a).
A bright surface in the scene contributes indirect light to a surface element. As we rotate the surface
element so that its normal points towards the bright surface, irradiance at the element will increase
because the contribution from the bright surface will get promoted by the cosine weighting.

The rotation gradient gives us a first order approximation of the irradiance change with rotation
(see Figure 2.4 (b)). Its direction is the axis of rotation that induces the fastest change in irradiance. Its
magnitude expresses how quickly the irradiance changes: it is the irradiance derivative with respect to
rotation around the axis given by the gradient direction.

The rotation gradient is estimated simultaneously with new irradiance value computation, from
the same set of radiance samples L i, using the following formula:

- N—-1 M-1
V,E~ —— Vi —tan6; - Lj |, (2.4)
k=0 j=0




22 CHAPTER 2. IRRADIANCE CACHING CORE

n

i

(a) (b) (c)

Figure 2.4: (a) As the surface element is rotated towards the bright surface, irradiance increases. (b) The
rotation gradient V, E; of cache record i gives the axis of rotation that produces maximum increase in
irradiance. The gradient magnitude is the irradiance derivative with rotation around that axis. (c) When
the surface element is rotated around any arbitrary axis (in our example determined by the change in
surface normal as n; X n) the irradiance derivative is given by the dot product of the axis of rotation and
the rotation gradient: (n; x n) - V. E;.

where

Vi is a base-plane vector in the direction ¢ + 5 (see Figure 2.5),
(0}, ¢x) are the spherical coordinates of the center of the hemisphere cell (j, k),
L i is the incoming radiance sample computed by tracing a ray through cell (j, k).

A derivation of the rotation gradient formula is given in Appendix B.

Having the gradient vector, we can now approximate how irradiance changes with a rotation of
the surface around an arbitrary axis. A change of surface normal, shown in Figure 2.4 (¢), is equivalent
to a rotation of the surface element around the axis given by the cross product of the normal of record
i and the normal at the interpolation location (n; x n). The first-order approximation of the change
of irradiance with this rotation is given by the dot product of the actual rotation axis and the rotation
gradient vector of the record: (n; x n) - V, E;. In irradiance caching, this formula is used to extrapolate
an irradiance value when reused at a point with a different surface normal (Equation 2.7).

2.1.1.2 Translation Gradient

Translation gradient tells us how irradiance changes as we move over a surface away from the point where
it was calculated by hemisphere sampling (Figure 2.6 (a)). Unlike for rotation gradient, the parallax effect
makes the rate of change dependent on the distance to the surfaces that contribute indirect illumination.
As we move over a surface, the projection of the surrounding environment onto the hemisphere moves
as well. For distant surfaces, the movement is relatively smaller than for near ones. In addition, occlusion
and disocclusion play an important role for the translation gradient. For these reasons, we utilize the
information about the ray lengths in hemisphere sampling for gradient estimation.
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Figure 2.5: Geometry used for gradient estimation.

Note that our translation gradient always lies in the tangent plane of the surface. In other words,
we ignore the change of irradiance with translation along the surface normal. This makes perfect sense,
since we only interpolate irradiance over surfaces.

The translation gradient is given by the following formula:

Nl 2 M7 coszej sin6;
VIE ~ ug— —————— L —Lj-10)+
’ ,;0 [ N ; min{r g

w (2.5)

cosf;(cosh;_ —cosb;,)
Vi Yy —— T (Ljk = Ljk-1) |-
sin6j g min{rj i, rjr—1}

j=0

The notation is illustrated in Figure 2.5 and summarized below. The gradient formula is derived in
Appendix B.

(J, k) 1s the cell index,

Lj k is the incoming radiance sample computed by tracing a ray through cell (j, k),

L i is the intersection distance of the ray traced through cell (j, k),

0;_ is the elevation angle at the boundary between the current cell (j, k) and the previous cell (j — 1, k),

R /1 _ L
0;_ = arccos,/1 i
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Figure 2.6: (a) As the surface element is translated, it becomes more exposed to the bright surface,
and irradiance increases. (b) The translation gradient V, E; of record i gives the direction of translation
that produces the maximum increase in irradiance. The gradient magnitude is the irradiance derivative
with respect to translation along that direction. When a surface element is translated along any arbitrary
direction, a first-order approximation of the change in irradiance is given by the dot product of the
translation vector and the translation gradient: (p — p;) - V/E;.

0}, is the elevation angle at the boundary between the current cell (j, k) and the next cell (j + 1, k),
0;, = arccos,/1 — %,

¢x_ is the azimuthal angle at the boundary between the current cell (j, k) and the previous cell (j, k — 1),
pr =2k,

¢r is the azimuthal angle at the center of the current cell (j, k), ¢x =27 %,

¢k, is the azimuthal angle at the boundary between the current cell (j, k) and the next cell (j, k + 1),

k1
o, =215,

u; is the base plane unit vector in direction (77/2, ¢x),
vi_ is the base plane unit vector in direction (77/2, ¢r_ + 7/2).

The translation gradient gives us the direction of the fastest change of irradiance. Its magnitude is
the derivative of irradiance with respect to this direction (see Figure 2.6 (b)). Given a displacement along
an arbitrary vector, we can approximate the actual change in irradiance as a dot product of the displacement
vector and the translation gradient. In irradiance caching, this formula is used to extrapolate irradiance
when reused at a different location (Equation (2.7)).

Note that the gradient formulas (2.4) and (2.5) give the gradients in the local coordinate frame
at the record location. To avoid frame transformations during irradiance interpolation, we transform the
gradients into the global coordinate frame before storing them in the cache.

2.2 IRRADIANCE CACHING ALGORITHM

Irradiance caching accelerates the computation of indirect illumination by performing the hemisphere
sampling only at a sparse set of locations in the scene. The computed irradiance values are stored in a
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Figure 2.7: Example of lazy irradiance evaluation in irradiance caching. Suppose the irradiance values
E; and E) were computed and stored in the cache previously. The weighted average of E| and E» is
used at a query point A. Query point B uses E». Point C is outside the validity radius of both E| and
E», so a new irradiance value is computed and stored as a new record it in the cache. (Figure redrawn
after [W1.598].)

cache and reused for fast interpolation at other locations. This section describes in detail when and how
the cached values are used for interpolation and when new values are computed and stored in the cache.

The overall caching scheme is based on “lazy” evaluation of irradiance as described in Algorithm 5.
New irradiance values are computed on the fly only if none of the cached values can be used for interpo-
lation. An example situation for irradiance caching is shown in Figure 2.7.

The IrradianceCaching() function from Algorithm 5 is called whenever we want to calculate diffuse
indirect illumination, e.g. when a primary ray in a ray tracer hits a surface. The returned irradiance value
is then simply multiplied by the diffuse reflectance (e.g. surface color or texture value) to get the outgoing
radiance contribution due to diffuse indirect illumination:

Lgiff—i“d(p) = pdT@ - IrradianceCaching(p, n).

Algorithm 5 Lazy irradiance evaluation used in irradiance caching.

function IrradianceCaching(p, n)
if one or more irradiance values can be used for interpolation at p then
return irradiance interpolated from the cached values.
else
Compute new irradiance value and gradients by hemisphere sampling.
Store the value with gradients as a new record in the cache.
return the new irradiance value.
end if
end function
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It is advantageous to cache irradiance since it describes the amount of incident light at a point,
before it is reflected, i.e. multiplied by local diffuse reflectivity. This allows us to reuse the cached values
even on surfaces where the diffuse reflectivity varies, for example when the surface is texture mapped.

To maximize the profit of irradiance caching, we want to perform the costly hemisphere sampling
only at a few locations in the scene. On the other hand, interpolation error due to irradiance reuse should
be minimized. Irradiance caching addresses these two contradictory goals by selecting the locations
for hemisphere sampling adaptively, such that the expected error due to interpolation is approximately
constant in the whole scene.

Figure 2.8 shows the locations of records (i.e. places where hemisphere sampling was invoked) in
an example scene. Notice that the records are widely spaced on flat surfaces in open areas, whereas they
become more densely packed on curved surfaces and in corners. Irradiance caching always distributes the
records in this way. The reason is that the expected interpolation error in the corner areas and on curved
surfaces is relatively large, so irradiance caching prefers denser record spacing there.

The determination of cached irradiance values that can be used for interpolation at a given point
and the interpolation procedure itself are quite intimately coupled: The interpolation is based on a simple
weighted average of the stored values. A cached value can be used for interpolation at a point only if its
interpolation weight with respect to that point exceeds some threshold value. The weight for a cached
value is inversely proportional to the expected error incurred by reusing that value at the location of
interpolation.

Figure 2.8: Cache record locations (black dots in the image on the right) in an example scene. The
density of records in the vicinity of geometry features and on curved surfaces is automatically increased
by irradiance caching in order to keep the overall interpolation error approximately constant in the whole
scene. (Sponza Atrium model courtesy Marko Dabrovic.)
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This scheme is designed for the very purpose of distributing the interpolation error uniformly over
the whole scene and its consequence is the adaptive record spacing illustrated in Figure 2.8.

To put the above ideas into practice, we need to predict the interpolation error caused by reusing
a cached value at a different location. The idea proposed by Ward et al. [WRCS88] is to derive an upper
bound on that error by analyzing the worst-case situation, i.e. an illumination environment that implies
the largest possible error. The derivation detailed in Apendix C on page 117 uses the so called sp/iz sphere
model as the worst case.

2.2.1 INTERPOLATION

The interpolated irradiance at p is computed as a weighted average of a subset of the cached irradiance
values E;:

> Ei(p)wi(p)

Ep=0 (2.6)

> wilp)

ieS(p)

where E; (p) is a cached irradiance value extrapolated to p. This can simply be the cached irradiance value
itself, E; (p) = E;. However, translation and rotation irradiance gradients, V, E; and V, E;, substantially
improve extrapolation accuracy:

Ei(p)=E +m; xn)-V.E; +(p—pi)V:E;. (2.7)

The two gradients are computed using hemisphere sampling, along with the irradiance value itself, as
described in Section 2.1.

The interpolation weight w; (p) for the weighted average in (2.6) is defined as the inverse of the
error estimate for the split sphere model (Equation C.2) derived in Appendix C:

1 1
w;(p) = - (2.8)
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where:

p is the interpolation point,

n is the surface normal at p,

pi is the position of the i-th cached record (stored in the cache),

n; is the surface normal at p; (stored in the cache),

R; is the distance to the surfaces visible from p; (computed as the harmonic mean or, alternatively, the
minimum of the ray lengths in hemisphere sampling and stored in the cache),

a is a user-defined constant specifying the allowed approximation error, discussed in more detail below.

Records used in interpolation 'The weight function (2.8) determines the set S(p) of irradiance values that
can contribute to interpolation at p:

S(p) = {is wi(p) > O}, 2.9)

In other words, a cached value can be used only in the vicinity of its location, where its weight w; (p) is
greater than zero. We will refer to this set as the walidity area of a record. The user-defined constant a
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appearing in the weight definition expresses the maximum allowed approximation error. The larger the
value of a, the bigger the allowance for interpolation and the larger the interpolation error.

If the set S(p) turns out to be empty at a given point, a new irradiance value is computed and stored in the
cache.

In the original formulation [VWWRC88], the subtraction of the 1/a term does not appear in the
weight definition. Instead, the set of records used for interpolation is defined as S(p) = {i; w;(p) > 1/a}.
However, subtracting the 1/a term in the weight definition has the advantage that the weight is zero at
the boundary of the validity domain, which leads to smoother interpolation results.

The irradiance records are indexed in an octree data structure that allows to quickly determine
records that can be used for interpolation at a point. More details are given in Section 2.3.

In practice, an additional test is used to decide which records can be used for interpolation. Notably,
we want to avoid including records from surfaces that lie “in front” of the interpolation point. Consider
the situation depicted in Figure 2.9. The surface normal at p; and p are the same and the distance to
surfaces R; for the record at p; is large enough so the record i would be used for interpolation at p.
However, this would likely cause large error since the actual indirect illumination at p coming from the
“step” next to it would be ignored. To avoid this kind of problems, Ward et al. [WRC88] suggest to

compute the following quantity for each candidate record:
di(p) =P —pi) - (n+n;)/2. (2.10)

If d; (p) is less than a small negative value, then p; is “in front” of p and the record i is excluded from
interpolation.

Figure 2.9: If the cached value at point p; is “in front” of the interpolation point p, it is excluded from
interpolation. (Redrawn after Ward et al. [VWWRC88].)

Alternative Weight Formulation Tabellion and Lamorlette [1'.04] use a modified version of the weight
function:

w; (p) = 1 — k max{e,; (p), €ni (n)}, (2.11)

lp—pill _ NT—n-m
———— and €,;(n) = ——.
R;/2 /1 = cos 10°

where

epi(p) = (2.12)
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The individual error terms are arbitrarily normalized to have value of 1 at the boundary of the record
validity domain. (For example, normalization of the orientation error term /1 — n - n; by 1/4/1 — cos 10°
means that a record is never reused if the difference of n from n; is more than 10 degrees.)

Instead of summing up the individual error terms, Tabellion and Lamorlette use their maximum
in the weight definition. Using the maximum is advantageous especially for debugging since at least one
of the error terms must exceed one for a record to be rejected from interpolation (as opposed to two small
error terms adding up).

The user-defined constant « determines the overall caching accuracy. It is inversely proportional
to the maximum allowed interpolation error a used in the original formulation above.

Probably the most beneficial property of Tabellion and Lamorlette’s weight is its overall shape,
illustrated in Figure 2.10. The maximum value of 1 (right at the record location) graciously falls off to
zero at the boundary of the record validity domain. Such a weight function usually produces smoother
interpolation results than weight (2.8), which tends to infinity at the record location.

Ward et al.
Equation (2.10)

Tabellion & Lamorlette,,//
Equation (2.13) ’

Figure 2.10: The weight function (2.11) proposed by Tabellion and Lamorlette yields smoother inter-
polation results that the weight (2.8) of Ward et al.

2.2.2 DISTANCE TO SURFACES, R;
The distance to the surfaces visible from the record location is calculated from ray lengths r; & in hemi-
sphere sampling when a new record is established and added to the cache. According to the derivation
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of the split sphere model in Appendix C, this value is computed as the harmonic mean of the ray lengths:

MN
RIMP = ——— (2.13)
kg

where MN is the total number of rays. As an alternative to the harmonic mean, Tabellion and
Lamorlette [1'.04] use the minimum of the ray lengths:

R™ =minrjy. (2.14)
j.k
Rays near the tangent plane are not taken into account when computing the minimum, as shown in

Figure 2.11. This is to avoid too small a value of R™™ on slightly curved concave surfaces, where the rays
near the tangent plane tend to be very short.

Figure 2.11: Rays near the tangent plane are not taken into account when computing the distance to
surfaces, R;, as the minimum of the ray lengths.

Using the minimum ray length instead of the harmonic mean has the advantage of decreasing the
chance of missing some small geometric details in the interpolation.

A small sidenote: The normalizing factors in the definition of the Tabellion and Lamorlette’s error
terms € ; and €,; (Equation (2.12)) are optimized for the very case of defining R; as the minimum of ray

lengths.
2.2.2.1 Maximum and Minimum Record Spacing

No matter if the calculation of the distance to surfaces R; uses the harmonic mean or the minimum of
the ray lengths, the resulting value will be extremely small in corners, where many of the rays are very
short. The weight computed by Equation (2.8) or (2.11) is then tiny even at a short distance between the
record position p; and the location of interpolation p. As a consequence, records become overly densely
packed in the corner areas, as shown in Figure 2.12 (a), and caching is not effective in there because
hemisphere sampling is performed nearly everywhere. On the other hand, the value of R; may become
too big in open spaces because some of the rays in hemisphere sampling miss the surrounding geometry.
The record is then reused over too large an area, which may cause some serious interpolation errors.

For the above reasons, it is a good idea to impose minimum and maximum limits on the record
spacing. This can be done by clamping the R; value computed in hemisphere sampling by some minimum
and maximum thresholds, Riin and Rpax:

Rf:lamp

1

= min{max{R;, Rmin}, Rmax}- (2.15)
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no spacing limits spacing limits in world space spacing limits in screen space

(a) (b) ()

Figure 2.12: The effect of different strategies for imposing a minimum and maximum spacing of records
by clamping the harmonic mean distance. With no spacing limits (a), too many records are generated
in corner areas and caching becomes ineffective. Setting the spacing limits in world space (b) produces
too many records far from the camera and too few near the camera. Setting the limits in screen space (c)
yields a good distribution of records over the whole image.

One possibility is to limit the spacing in world space, by setting the thresholds, Rinin and Rmax, to a
value used in the entire scene. (For example, the ambient resolution parameter -ar in Radiance [\WL598],
specifies Ruin as a fraction of the scene size; the maximum, Rmax, is then set to 64 times the minimum.)
However, limiting the record spacing in world space still produces unnecessarily densely packed records
far away from the camera (see Figure 2.12 (b)), generating overkill computation. On the other hand, there
will often be too few cache records near the camera, giving rise to visible interpolation problems.

A better idea, proposed in [1'.04], is to clamp the record spacing relative to screen-space distances,
by specifying Rmin and Rmax as a multiple of the pixel size projected to the record location. Good values
for Rpin range between 1 and 3 times the projected pixel size. The maximum of 20 times the projected
pixel size is suggested in [1'L04]. The projected pixel size can be computed as the square root of the pixel
footprint area on the surface. In most rendering systems, the pixel footprint is readily available in the
form of ray differentials which are used for texture filtering [P1104]. The screen-space clamping produces
good distribution of records over the entire image (Figure 2.12 (c)). Moreover, it is more intuitive for
users to set the spacing limits in image pixels than relative to the scene size.

2.2.2.2 Gradient-Based Limit on Record Spacing
The derivation of the interpolation criterion for irradiance caching uses the “split sphere” model as the
worst case illumination scenario that implies the largest possible rate of change (or gradient) of irradiance
with translation and thus the largest error caused by reusing an irradiance value at a different location. The
gradient derived for the split sphere model is used as an upper bound on the rate of change of irradiance,
which yields the weight function (2.8).

However, as discussed in Appendix C, the split sphere model represents the worst case only if
the environment does not contain concentrated sources of indirect illumination. As it turns out, in some
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locations of many scenes, the “upper bound” derived from the split sphere model is smaller than the mag-
nitude of the actual translation gradient V; E; estimated from hemisphere samples using Equation (2.5).
The record spacing dictated by the split sphere model then becomes insufficient to properly model the
illumination variation in these high-gradient areas and visible interpolation artifacts may appear.
However, we do have an estimate of the actual translation gradient at our disposal, so we can
remedy the situation: The “upper bound” of the translation gradient derived from the split sphere model
is given by E; / R; (see Appendix C). If this “upper bound” turns out to be less than the magnitude of the

actual translation gradient, V; E;, we simply limit the R; value such that ||V, E;|| < % holds:

R; < min{R;, 1 (2.16)

1
IV Eill
This heuristic is applied to a new irradiance record before inserting it into the cache. The effect of the
gradient-based limit on record spacing is illustrated in Figure 2.13.
It is important, however, not to rely only on the gradient magnitude estimate || V; E; || to determine
the record spacing since the estimate may happen to be very low. It is safer to keep the record spacing
conservative by combining the predictions from the split sphere model with the actual gradient magnitude.

2.2.2.3 Limiting Gradient Magnitude
The magnitude of translation gradients calculated using Equation (2.5) may be excessively large, due
to the division by the ray length 7 x, which is often tiny along edges and in corners. Dark and bright
splotches in corner areas, shown in Figure 2.14, may appear as a consequence of the exaggerated gradient
magnitude.

A solution to this problem is quite straightforward. It consists in limiting the gradient magnitude
as follows:

R.
V,E; < V,E; - min{1, I . (2.17)

min

where

R; is the distance to surfaces calculated as mean or minimum ray length,
Runin 1s the minimum spacing threshold (see Section 2.2.2.1),
V. E; is the translational gradient (one 3D vector per color component).

The same problem is addressed slightly differently in Greg Ward’s Radiance implementation or
Eric Tabellion’s PDI/Dreamworks implementation [KGW08].

2.2.2.4 Neighbor Clamping
When a new record is created, the distance to surfaces R; is computed from the lengths of the sample
rays. However, because the sample rays do not cover all directions in the hemisphere, some geometry
features in the scene may be missed. The calculated value of R; is, then, too large and produces low record
density. If the missed geometry feature is a source of strong indirect illumination, interpolation artifacts
appear in the image. Because of the stochastic nature of hemisphere sampling, the features missed by one
record may not be missed by another, which even amplifies the noticeability of the image artifacts.
Examples of features most commonly missed are steps of a staircase, or windowsills on a facade,
which may be too small to keep the harmonic mean of ray lengths low, yet important in terms of indirect
illumination. The left column of Figure 2.16 shows the artifacts due to the insufficient record density
around the steps.
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i

no gradient-based limit on R; R; capped by the gradient magnitude

Figure 2.13: The effect of limiting the distance to surfaces, R;, by the translation gradient magnitude.
The gradient of indirect illumination above the arches is very high due to the sunlight reflected from the
arches onto the walls. With no gradient-based limit (left) the spacing of irradiance records predicted by
the split sphere model is not sufficient to model the illumination variation. With the gradient-based limit
on the distance of surfaces R; (right), record spacing is increased around the arches and the illumination
variance is properly resolved.
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no limit on gradient magnitude limited gradient magnitude

Figure 2.14: The effect of limiting the gradient magnitude. High gradient magnitude in corners causes
image artifacts (left). The artifacts can be suppressed by limiting the gradient magnitude (right).

Tabellion and Lamorlette [ '1.04] address this problem by calculating the distance to surfaces R; as
a minimum of ray lengths, instead of taking the harmonic mean. This increases the probability of detecting
small geometry features and indeed, the step-like features are less likely to be missed. However, using
the minimum may be overly sensitive to even very tiny geometry features that have little significance in
terms of indirect illumination.

Our solution to the problem of missing geometry features is dubbed neighbor clamping. We start
with a simple observation: Because of the stochastic nature of hemisphere sampling, the features missed by one
record are usually not missed by all neighboring records. Therefore, we want to propagate the information
about the presence of geometry features from the records that did not miss the features onto the one that
did miss them.

The second important observation is that distance to surfaces, R;, for neighboring records must fulfill
the triangle inequality, as illustrated in Figure 2.15. Invalidity of the triangle inequality suggests that a
geometry feature was missed by some of the records.

Our solution then consists in enforcing the triangle inequality by reducing the R; value of some
records. In particular, the R; values of two nearby records are not allowed to differ by more than the
distance between the two records.

Technically, when a new record i is being created, we locate all nearby records j and clamp the
new record’s R; value. After that we similarly clamp the nearby records’ R ; values by the new record’s R;
value. The procedure is described in Algorithm 6. The validity area of the “nearby” records overlaps with
the (tentative) validity area of the new record and and their position passes the “in front” test (2.10).
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o
7. P;

Hpi'p/H
rj<rr’+ ||p:_p/||

p;

Figure 2.15: Records’ distance to surfaces must fulfill the triangle inequality. Consider a record i at
position p; at distance 7; from a small geometry feature. Now consider another record, j, at position p;.
By the triangle inequality, the maximum possible distance of record j from the geometry feature must be
less than or equal to 7; + [[p; — p;ll-

Algorithm 6 Neighbor clamping heuristic.

procedure NeighborClamping(p;, n;, R;)
nearbyRecords <— LocateNearbyRecords(p;, n;, R;)

// Clamp new record’s R; value.

for each record j in nearbyRecords do
R; < min{R;, R; + |pi — p;ll}

end for

7/ Clamp other records’ R j value.
for each record j in nearbyRecords do
Rj < min{R;, R; + [lp; — pjll}-
end for
end procedure

A consequence of this clamping is that a too large R; value of a record, caused by missing a
geometry feature, is reduced due to some of the neighboring records that did not miss that feature.

When implementing the neighbor clamping heuristic, it is important to work with the values
of distance to surfaces R; before clamping them by the minimum and maximum spacing limits Rpin
and Rpax since only the original value contains undistorted information about the presence of geometry.
However, every time a record’s value of R; is altered in neighbor clamping, we also update the value of
RFlamp

1

value of distance to surfaces, R; and RiC famp , as well as the spacing limits used for clamping, Rpin and
Rinax- (Recall that the value of Rpin and Rmax may be different for each record if screen-space limits are

applied.)

using Equation (2.15). For these reasons, we store with each record both the clamped and original
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no neighbor clamping with neighbor clamping

Figure 2.16: Without neighbor clamping, small geometry features are often missed. If the missed geom-
etry features are sources of strong indirect illumination, image artifacts appear (see the detail of the steps
in the left column). Neighbor clamping reliably detects and suppresses the artifacts caused by missing
small geometry features (see the right column). The images show only indirect illumination.

The triangle inequality argument behind the neighbor clamping heuristic is fully justified only
when using the minimum ray length for computing distance to surfaces R;, but it gives very good results
even for the harmonic mean. The geometry features are almost never missed, and the overall distribution of
records in the scene behaves well. Figure 2.16 demonstrates how neighbor clamping (right column) helps
detecting small, step-like geometry features. Without neighbor clamping (left column), those features are
often missed and artifacts appear in the image (see the detail of the stairs). Both images were rendered
using the same number of records (7,750). Without neighbor clamping, at least 20,000 records were
required to get rid of the image artifacts on the stairs.
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Ray Leaking  Irradiance caching is quite sensitive to imperfections in scene modeling; a typical example
in which caching breaks down is an inaccurate connection of adjacent edges of two polygons. This may
be produced e.g. by an insufficient number of significant digits when a scene is exported to a text file.

wall
polygon

floor

~—— _——— _ polygon

(b) no neighbor clamping (c) with neighbor clamping

Figure 2.17: Inaccurate connection of polygons (a) may result in ray leaking, giving rise to serious image
artifacts (b). The artifacts are significantly reduced by the use of the neighbor clamping heuristic (c).

Consider the situation in Figure 2.17 (a). There is a small gap between the floor polygon and the
wall polygon. If a primary ray hits this gap, its intersection with the floor polygon can be found bebind the
wall polygon. As a consequence, rays that are supposed to hit the wall now /eaZ either to the neighboring
room or to infinity. The outcome of such an event is quite disastrous:

* The computed irradiance is completely wrong.

. . i . : ’ .
The distance to surfaces R; is much greater than it should be; therefore, the wrong irradiance value
gets reused over a very large area.

An example of the resulting image artifacts is shown in Figure 2.17 (b).
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Fortunately, using neighbor clamping can alleviate the situation. Records suffering from ray leaking
have disproportionately greater distance to surfaces R; than their neighbors not having this problem,
thereby breaking the validity of the triangle inequality. Therefore, ray leaking is reliably detected by the
use of neighbor clamping and its consequences are alleviated by the reduction of the erroneous R; value.
Figure 2.17 (c) shows that neighbor clamping detects and suppresses the effects of ray leaking.

2.2.3 CREATING AN IRRADIANCE RECORD: SUMMARY
In the previous section, we have seen that a number of heuristics may have impact on the values stored
in the cache. Let us now summarize the whole process of creating a new irradiance record:

Algorithm 7 Procedure used to create a new irradiance cache record.

function CreateRecord(p;, n;, i)
[L; ], [rjk] < SampleHemisphere(p;, n;)

E; < IrradEstimate([L  x]) > Equation (2.2), pg. 19
V,E; < RotGrad([L; «]) > Equation (2.4), pg. 21
ViE; < TransGrad([L«], [rjx]) > Equation (2.5), pg. 23

// A series of heuristics sets the value of R; ...

R; < DistanceToSurfaces([r; 1) > Equation (2.13) or (2.14), pg. 30
Limit R; by gradient: R; <— min{R;, HvtE—éiH} > Equation (2.16), pg. 32
Clamp R;: RiClamp = min{max{R;, Rmin}, Rmax} > Equation (2.15), pg. 30
Limit gradient by R;: V;E; < V,E; - min{1, %} > Equation (2.17), pg. 32
NeighborClamping(p;, n;, R;, Rl.Clamp , Rmin, Rmax) > Algorithm 6, pg. 35

record < AllocateRecord(p;, n;, Ei, V, Ei, V, Ej, Rl.Clamp , Riy Rmin, Rmax)

return record
end function

An irradiance record contains the following entries:

pi Point3D record location
n; Vector3D  surface normal at p;
E; Color cached irradiance

1
V,E; Vector3D[] rotation gradient (one 3D vector per color component)
V:E; Vector3D[] translation gradient (one 3D vector per color component)

RiC lamp float distance to surfaces used for irradiance interpolation
R; float original distance to surfaces (used for neighbor clamping)
Rumin float minimum spacing threshold (used for neighbor clamping)

Rmax  float maximum spacing threshold (used for neighbor clamping)
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2.3 DATA STRUCTURE

In order to make irradiance caching effective, there should not be much overhead related to the cache
queries. For that we need a storage method for the cached values that ensures fast lookups. We definitely
cannot afford to evaluate the weight function for all the cached records every time we determine the set
S(p) of records usable for interpolation at a point.

One option would be to store the irradiance values directly on the surface elements of the geometry,
such as triangle faces, in a way similar to radiosity algorithms [CVW93]. This approach would afford for
very fast lookups but it has several important disadvantages: the geometry would be limited to parametric
patches, stored irradiance values could not be reused over several objects, there would be problems with
instancing of geometry, etc. A better option is to keep the record storage completely independent of the
scene representation in a spatial index structure.

From the definition of the set S(p) (Equation 2.9) and the weight w; (p) (Equation 2.8), we see
that a record can only be reused inside the wa/idity sphere centered at the record location with the wvalidity
radius of aR;. Therefore, we are looking for a spatial data structure for indexing spheres of various radii
that allows efficient insertion (without a complete rebuild of the structure) and, more importantly, fast
lookup of all the spheres that overlap a given point in space.

2.3.1 SINGLE-REFERENCE OCTREE

Ward at al. [WRC88] recommend to organize the records in an octree. The octree used for the irradiance
cache is completely independent of the data structure used to accelerate ray-object intersections. Each
record is referenced by a single octree node—the node that contains the record location and the box size
of which is proportional to the record’s validity radius. The octree is built incrementally as new records
are created and inserted. The insertion proceeds from the root to the node that will reference the new
record, possibly creating new nodes on the way. Figure 2.18 (a) shows an example of the assignment of
records to the octree nodes. The procedure to look up records that can contribute to the interpolated
value at point p is summarized in Algorithm 8.

Algorithm 8 Record lookup in the single-reference octree.

procedure LookUpRecordsSR(node, p, n)
for all records i stored in node do > Examine records in this node
if (w;(p) > 0) and (p; not in front of p) then
Include record in S(p).
end if
end for
for all children of node do > Recurse
if p is within half the child’s size of its cube boundary then
LookUpRecordsSR(child, p, n)
end if
end for
end procedure

This algorithm searches not only the octree nodes containing the point p, but any octree node
with a boundary within half the node’s side length of p. This guarantees that all relevant cached records
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(a) Single-reference octree (b) Multiple-reference octree

Figure 2.18: Example of the assignment of irradiance cache records to the octree nodes for the single-
reference octree (a) and the multiple-reference octree (b). In the single-reference octree, a record is
referenced by a single octree node containing the record’s location. In the multiple-reference octree, on
the other hand, a record is referenced by all the tree nodes overlapped by the record’s validity sphere
(shown here as the thick circles). (Figure adapted from [WL598].)

will be examined. The single-reference octree is used in the Radiance implementation of irradiance
caching [WL598].

2.3.2 MULTIPLE-REFERENCE OCTREE

The disadvantage of the single-reference octree described above is the relatively slow search procedure
that involves possible recursive examination of multiple children at each node. Since our aim is to cut
the cache query time to the minimum, it is a good idea to design the traversal procedure such that the
recursion can be eliminated. This can be easily achieved by referencing each record from all octree nodes
that overlap the record’s validity sphere, as illustrated in Figure 2.18 (b). The lookup procedure now
merely examines the records stored in the nodes on the way from the root to the leaf containing the query
point (Algorithm 9).

To insert a new record in the octree, we recursively traverse the octree nodes that overlap the
record’s validity sphere (creating new nodes on the fly as needed). The traversal is stopped and a reference
to the new record is created when the node’s box is approximately the same size as the validity radius of
the new record.

The disadvantage of the multiple-reference octree are an increased memory consumption and
slower record insertion. However, they are more than compensated by the much faster lookup.
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Algorithm 9 Record lookup in the multiple-reference octree.
procedure LookUpRecordsMR(p, n)
node <« root
while node # NULL do
for all records i stored in node do > Examine records in this node
if (w;(p) > 0) and (p; not in front of p) then
Include record in S(p).
end if

end for

node < child containing p > Descend in the octree
end while
end procedure

A basis for the implementation of the multiple-reference octree can be found in PBRT [PH04]
(octree.h). Algorithm 10 gives a C++ code for a sphere-box overlap test [LAMIO7].

Algorithm 10 C++ code for a sphere-box overlap test.

// Return true if a sphere (c,r) overlaps a box given by corners pMin and pMax.
bool SphereBoxOverlap(const Vector3D& pMin, const Vector3D& pMax,
const Vector3D& c, const float r) const
{
float dmin = O;
for( int i = 0; i < 3; i++ )

{
if ( c[i] < pMin[i] ) dmin += sqr(c[i] - pMin[il);
else if ( c[i] > pMax[i] ) dmin += sqr(c[i] - pMax[il);
}
return dmin <= r*r;
}

2.3.3 LAST QUERY REUSE

When super-sampling is used for image anti-aliasing, there may be many irradiance cache queries issued
for shading the same pixel. In most cases, these queries will return very similar irradiance values, which
are in turn averaged in the calculation of the final pixel color. It is a waste of time to run all these cache
queries since reusing the results of a query for all subsequent queries in the same pixel produces nearly
identical results. However, we must ensure that a query result is not reused over discontinuities in depth
and surface orientation. This can be accomplished by checking the following conditions before the result
of the last query is reused:

* The last query was issued for computing the value of the same pixel as the new query.

* The distance between the locations of the two queries is less than the projected pixel size.
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* The difference in normals is less than a threshold (we use nye - Npeyw > 0.95).

If any of the above conditions is not met, we issue a new cache query, instead of reusing the last value.

Even for moderate super-sampling rates, the savings due to the last query reuse may be substantial.
In addition, this simple technique also amortizes the penalty for a not very well optimized implementation
of the spatial data structure used for record look-ups.

2.4 IRRADIANCE CACHING SUMMARY

What we have described by now should be sufficient to implement the “guts” of irradiance caching.
Before going to the next section, which focuses on the integration of irradiance caching in a renderer,
let us summarize the algorithm. We take the brief description of irradiance caching from Algorithm 5
on page 25 and fill in the references to various sub-procedures described earlier. The result is shown in

Algorithm 11.

Algorithm 11 A detailed overview of the irradiance caching algorithm.

function IrradianceCaching(p, n)

S(p) < LookUpRecordsMR (p, n) > Algorithm 9, pg. 41
if S(p) # ¢ then
return Interpolatelrradiance(S(p), p, n) > Equation 2.6, pg. 27
else
record < CreateRecord(p, n, recordCount) > Algorithm 7, pg. 38
StoreRecord(record) > Section 2.3, pg. 39
return record.E
end if

end function
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CHAPTER 3

Practical Rendering with
Irradiance Caching

This chapter discusses some details that make rendering with irradiance caching more practical. Sec-
tion 3.1 shows that the order in which pixels are visited during image rendering may have a significant
impact on the caching performance and image quality. In Section 3.2 we focus on maintaining a good
performance of irradiance caching in complex scenes. After that, in Section 3.3, we turn our attention
to motion blur rendering. Finally, Section 3.4 shows how irradiance caching can be used for ambient
occlusion computation.

3.1 SINGLE-PASS VS. TWO-PASS IMAGE RENDERING

One of the strong features of irradiance caching is the “lazy evaluation” scheme: new irradiance values are
computed on the fly, only if the existing cached values cannot be used for interpolation at a given point.
How.e\./er, the l'azy'cvaluation may compromise the image quality depending on the order in which pixels
are visited during image rendering.

3.1.1 SCANLINE ORDER

Consider image rendering in scanline order, one pixel after another, from the top left to the bottom right.
In such a scenario, a record created on a scanline will not affect the color of the preceding scanlines at all,
even though some pixels on the preceding scanlines may fall within the validity area of the new record.
This may, and usually does, create disturbing interpolation artifacts in images, shown in Figure 3.1 (a).
For brevity, we will refer to this phenomenon as the “missed contribution” problem.

3.1.2 HIERARCHICAL REFINEMENT AND BEST CANDIDATE PATTERN
The situation is greatly improved by using a hierarchical refinement of the image. First, only several pixel
on several scanlines are shaded, effectively producing a very low-resolution version of the final image.
Each subsequent pass quadruples the number of shaded pixels by doubling the effective image resolution
along both axes.

Similar to the scanline order, hierarchical refinement does suffer from the “missed contribution”
problem: once shaded, some pixels are not affected by irradiance records created at a later time, even if
they fall within the new records’ validity areas (the strange patterns in Figure 3.1 (b) are caused by this
problem). Still, hierarchical refinement greatly ameliorates the situation for the following reasons:

(1) fewer pixel in the image suffer from the “missed contribution” problem,
(2) erroneous pixels do not form contiguous blocks, which makes the errors less noticeable.

In addition, the number of records required to cover the whole image is lower than with the scanline
order (a consequence of point (1) above), yielding better overall rendering performance.
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Using the Best Candidate pattern [P1104, Section 7.5] for image sampling takes the aforemen-
tioned advantages of hierarchical refinement even further: even fewer pixels suffer from “missed contri-
bution”; even fewer records are required to cover the image plane; the erroneous pixels form even less
regular, and less conspicuous, patterns.

The Best Candidate pattern is created from a single randomly placed point. In the subsequent
steps, several randomly placed candidate points are proposed, and the one farthest from all existing points
is kept. The procedure continues until a desired number of points is created.

3.1.3 TWO-PASS RENDERING

No matter how good the image sampling pattern, it is impossible to completely suppress the “missed
contribution” problem, described above, in a single-pass rendering. It is often unavoidable to resort to a
two-pass rendering approach. In the first pass, we use hierarchical refinement or Best Candidate pattern
to sample the image, with the only goal to populate the irradiance cache. In the second pass, we use
the cached irradiance values in shading image pixels. The pixel traversal order in the second pass can be
arbitrary since the cache has been filled in the first pass. To reduce the overhead due to the two passes, it is
not necessary to generate a fully antialiased image in the first-pass. However, it is a good idea to generate
one sample per pixel if fine illumination details are to be resolved properly. Figure 3.1 (c) shows the result
of two-pass rendering. Notice that the pixel patterns appearing in (b) due to the missed contributions are
now gone.

Smoothing out indirect illumination The two-pass rendering approach allows us to use another trick
to improve the smoothness of the interpolated illumination. All it takes is to increase the value of the
allowed interpolation error @ in the second pass (see Section 2.2.1, pg. 27). Increasing a effectively
enlarges the validity domain of each record and produces smoothing of indirect illumination, as shown
in Figure 3.1 (d). Smoothing introduces more bias in the result but on the other hand, makes the error
due to interpolation much less conspicuous. In addition, smoothing also reduces flickering in animation
rendering. Typically, we increase the a value in the second pass from 1.4x to 1.8x.

3.2 HANDLING COMPLEXITY

The efficiency of irradiance caching relies on the validity of the technique’s fundamental assumption that
indirect illumination varies slowly in space. This is why using irradiance caching on complex geometry,
such as trees, will rarely pay off—simple path tracing usually does a better job in complex scenes.

Some of the problems caused by complex geometry can be alleviated by using a simplified scene
geometry for irradiance caching, as described in Section 3.2.1. In addition, in some cases we know a priori
the character or the source of the scene complexity. In such cases, we can exploit our knowledge to get
the best of irradiance caching even in complex scenes. In the following sections, we will discuss some of
these cases, more specifically bump mapping, displacement mapping, and rendering of fur, hair and grass.

3.2.1 RAYTRACING SIMPLIFIED GEOMETRY

When performing hemisphere sampling for the purpose of creating a new irradiance record, the accuracy
of individual radiance samples computed using ray tracing is not critical since they are anyhow averaged
into just a single value, the irradiance E. We can take advantage of this by ray tracing only a coarse version
of the scene geometry in irradiance caching (we select only a coarse subdivision or tesselation level for
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(a) scanline order (b) hierarchical refinement

(¢) two-pass rendering (d) two-pass rendering with 1.6x smoothing

Figure 3.1: The impact of pixel rendering order on the image quality. Scanline order (a) produces
discontinuities. Hierarchical image refinement (b) improves the image quality but still leaves artifacts
in the form of pixel patterns. Two-pass rendering (c) suppresses the patterns. Additional smoothing (d)
removes the visible discontinuities due to interpolation. (No irradiance gradients were used to make image
artifacts more apparent. With gradients the differences are more subtle.)

curved surfaces). Using simplified geometry makes ray casting! cheaper and avoids problems with scenes
that would not fit into memory in full detail.

To make ray tracing of simplified geometry work, one must resolve the inconsistency between the
full-detail geometry and the simplified one: Rays are initiated from a point on the detailed geometry but

By ray casting we understand finding the nearest intersection for a given ray.
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only the simplified one is used to find intersections. This discrepancy may lead to self-intersections, when
an unwanted intersection is reported with the surface from which the ray was initiated. The solution
suggested by Tabellion and Lamorlette [11.04] is illustrated in Figure 3.2. They use the following ray
offsetting algorithm:

1. Find all ray-geometry intersections within a user-defined offset distance from the ray origin (on

both sides of the ray origin).
2. Stop ray traversal once an intersection is reported beyond the offset distance.

3. Let the nearest of the intersections found within the offset distance become the new effective ray
origin. If no intersection is found within the offset distance, leave the ray origin unchanged.

4. Return the next hit along the ray as the resulting ray-geometry intersection.

For this algorithm to work, the offset distance should be sightly greater than the maximum distance
between the original and coarse geometry.

simplified L . detailed geometry ° effective
geometry ", (micropolygons) ray origin

Figure 3.2: Ray offsetting algorithm used for ray tracing of simplified geometry. (Redrawn after [ 1'.04].)

The global illumination system described by Tabellion and Lamorlette [ ' 1.04] uses manual setting
for the geometry tesselation rate. Christensen el al. [CLI"03] describes an automatic approach to set
the tesselation rate for ray tracing depending on ray differentials.

3.2.2 BUMP MAPPING

In bump mapping, a texture modulates the surface normal of a base surface, creating the appearance of a
bumpy or wrinkled surface. The normal variation due to the bump map can be substantial. Since irradiance
caching reuses values only over areas with similar normals, its performance significantly degrades on a
bumped surface—many records are created due to the high normal variation, as shown in Figure 3.4 (a).
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rotation gradient
creates bumpy look
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Figure 3.3: Irradiance caching on a bump mapped surface uses the unperturbed normal in order to
maintain good cache coherency. The bumped look of indirect illumination is approximated by applying
the rotation gradient to extrapolate irradiance to the surface orientation given by the bump map.

A simple solution to this problem, illustrated in Figure 3.3, consists in using the surface normal
unperturbed by the bump map for hemisphere sampling and the cache queries. To reintroduce the detail
due to the bump map, we use the rotation gradient to extrapolate irradiance to the surface orientation
given by the bumped normal. The result is shown in Figure 3.4 (c). Although some detail of the bump
map is lost, the overall appearance of the bumpy surface is well preserved.

3.2.3 DISPLACEMENT MAPPING
Displacement mapping is similar to bump mapping with the difference that not only the surface normal,
but also the surface position itself is modulated by the texture. If irradiance caching was simply applied to
the displaced surface’s position and orientation, the limited degree of coherence would cause poor caching
performance.

To work out this problem, Tabellion [KGW ' 08] suggests an approach similar to what we used
for bump mapping (see Figure 3.5):

* Hemisphere sampling uses displaced surface but unperturbed normal. (The displaced position is
used to avoid self-intersection problems.)

* Cache records are stored on the undisplaced surface.
* Cache lookups are performed on the undisplaced surface.

Translation and rotation gradients are used to adjust irradiance when moving from one position and
orientation to another.

As a consequence of the above technique, the illumination details due to indirect light reflected
from one displacement onto another are lost. To compensate for this loss, it is usually sufficient to modulate
the indirect illumination by ambient occlusion (see Section 3.4 below), statically pre-computed for the
displacement map and mapped onto the displaced surface.

3.2.4 FUR, HAIR & GRASS
Fur, hair and grass present a challenge for irradiance caching due to their sheer geometric complexity.
Fortunately, if visual plausibility matters more than accuracy, a simple solution due to Tabellion and
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2947 records 297 records

(a) IC with perturbed normal (b) Reference solution (c) IC with unperturbed normal

Figure 3.4: Example of irradiance caching on a bump mapped surface. a) Using the perturbed normal
vector directly in irradiance caching yields poor cache coherency, and as a consequence, many records are
generated. ¢) With the unperturbed normal, the number of irradiance cache records drops tenfold in our
example, although some bump detail is lost. The top row shows the record positions. The renderings in

the bottom row show indirect illumination only.

Lamorlette [T1.04] can be used to apply irradiance caching to furry characters or grassy grounds. The
irradiance queries are performed on the base surface, at a position corresponding to the root of the hair
or grass blade. Hair is completely ignored in hemisphere sampling when a new record is created. That is
to say, there is no hair or grass present in the scene from the point of view of irradiance caching.

Irradiance interpolation is a two-step process. First, the irradiance is interpolated at the root of
the shaded hair using translation and rotation gradient as in normal irradiance caching. In the second
step, the interpolated irradiance at the hair root is extrapolated along the hair using a fake self-shadowing
gradient based on the distance along the hair [NK04].

As a consequence of this approach, hair receives indirect illumination from distant surfaces but not
from the underlying character skin or from other hair. This may be a problem if accuracy was important
but for stylized depiction in computer animation this is usually not an issue. It should be pointed out,
however, that the above approach is not suitable for computing indirect illumination on long hair.
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displaced surface

(detailed)
n —_____ displaced surface
* (simplified)
undisplaced
surface

3. irradiance here

3. store here query here

(a) new record (b) interpolation

Figure 3.5: Irradiance caching and displacement mapping. (a) To create a new radiance record, hemi-
sphere sampling uses the displaced surface and unperturbed normal. However, when stored in the cache,
record position uses the corresponding point on the undisplaced surface. Translation gradient is applied
to adjust irradiance. (b) To interpolate irradiance at point p on the displaced surface, the cache query is
performed at the corresponding undisplaced point pu“d. However, the irradiance is extrapolated to the
original point, p.

3.3 MOTION BLUR

Motion blur is widely used in photography or cinematography to convey the speed of a moving object. It
is thus utterly important to make irradiance caching compatible with motion blur rendering.

Motion blur is essentially a low-pass filter that blurs parts of the image. This is why it is often
applied in image post process, after the image has been rendered. However, for accurate results, motion
blur should be generated as an integral part of image rendering.

In micropolygon-based architectures, such as Reyes [CCC87], used in most implementations of
the RenderMan standard [Ups90], the micro-polygon vertices are shaded before the visibility and the
motion blur are resolved. In other words, the shading calculation is not aware of motion blur, and therefore,
it proceeds the same, no matter if motion blur is used or not. This makes the application of irradiance
caching straightforward.

However, in rendering systems based purely on ray tracing (or any other rendering technique where
visibility determination is not decoupled from shading), the situation is more complicated. Let us first
recall the distribution ray tracing approach to motion blur rendering [CPC84, Co089]. To compute the
color of a pixel, a distribution ray tracer generates a number of rays passing through random positions
inside the pixel. For each of these rays, a random time in the “shutter open” time span is selected and the
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caching uses
hair-growing
surface

p—— fake self-shadowing

Pwrapolates along the hair ™~ pair
hair
p —\ hair-growing
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Figure 3.6: Irradiance caching on hair and fur essentially ignores the presence of hair. Cache queries
are performed on the base surface at the hair root. The irradiance at the root is then extrapolated to the
position on the hair using a fake self-shadowing term. This approach works well for short and medium
hair, fur or grass.

ray is traced in the scene, where geometry position is adjusted to that time. Algorithm 12 summarizes
this procedure.

Algorithm 12 Motion blur computation with distribution ray tracing.

function ComputePixelRadiance
Loyt <0
for i < 1 to samplesPerPixel do
t; < random time in the “shutter open” time span
dir; < ray direction through a random location in the pixel
ray; < [cameraPos, dir;]
Loyt += Trace(ray;, #;) > Adjust geometry to time t;
end for
return L.,/ samplesPerPixel
end function

In short, if there are moving objects in the scene, each single primary ray in distribution ray tracing
essentially traces a (slightly) different scene. If irradiance caching was simply applied at each intersection
without additional care, we would obtain quite disastrous results, shown in Figure 3.7(a). The reason is
twofold:

* The cache query points are distributed all along the trajectory of the moving objects. However,
irradiance caching expects the query points on a smooth surface. Therefore, there will be an excessive
number of cache records.

* Each irradiance value in the cache corresponds to a different time. Interpolation between these
values does not make any sense.

One possible solution is to use “temporal re-projection.” Whenever we are about to perform an
irradiance cache query, we first move the point and its normal to a location corresponding to one fixed time,
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(a) Irradiance Caching - no reprojection (b) Irradiance caching + reprojection

(c) Scene state when using reprojection (d) Reference solution

Figure 3.7: (a) Using irradiance caching to render a scene with motion blur produces image artifacts
since each cache record captures illumination at a different instant in time. (b) A simple solution to
solve this problem is to “reproject” the query points to the corresponding position at a fixed instant in
the shutter open time span. (¢) When using the temporal reprojection, irradiance caching sees the scene
in the state corresponding to that fixed time. (d) The reference solution may differ from the irradiance
caching solution (notice the darker spot on the floor under the sphere) since indirect illumination is not
motion blurred when using the temporal reprojection. (The images show indirect illumination only.)
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typically in the middle of the shutter open time span. Therefore, all irradiance calculations correspond
to the same scene configuration and irradiance can be interpolated. The disadvantage of this approach
is that the indirect illumination is not motion blurred. However, this is rarely a problem, since global
illumination usually changes very slowly in time.

3.4 AMBIENT OCCLUSION CACHING

Ambient occlusion is a scalar value between zero and one associated with positions on a surface. It
expresses what portion of the hemisphere above each surface point is shadowed by the scene geometry.

To apply ambient occlusion in rendering, we simply multiply the results of a local shading, such
as diffuse or even constant, by the ambient occlusion value. As a result, surfaces surrounded by a lot
of geometry appear dark whereas surfaces that are not occluded appear light, which is similar to how
an object would appear on a cloudy day (see Figure 3.9). Ambient occlusion has recently become very
popular both for real-time and in high-quality rendering [[.an02, Chr03], since it can render some aspect
of global illumination—the soft illumination gradations—at a much lower cost.

Ambient occlusion A(p) can be formally defined as:

Alp) = %/}H V(p, w) cos6 dw (3.1)

where p is the considered point on a surface, H is the upper hemisphere centered around the surface
normal at p, w is a direction, 0 is the angle between of w and n, the surface normal at p,i.e.cosf = n - w.
The visibility function V (p, w) returns one if p is visible in the direction w and zero otherwise (see
Figure 3.8). The normalization by 1/m ensures that A(p) = | in the case of no occlusion. The above

Figure 3.8: Ambient occlusion expresses what portion of the hemisphere above a point is occluded by
the scene geometry. It is computed as a hemispherical integral of the visibility function V.

definition shows the relation of ambient occlusion to irradiance E(p), defined by Equation (2.1), pg. 18
as:

E(p) :/ Li(p, w) cos6 dw.
H+
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Ambient occlusion is nothing more than irradiance on a surface illuminated by infinitely distant light
source with unit radiance L; in all directions:

1
A(p) = —E .
(P) T (P) VYo: Li(p,w)=1

To sum up, ambient occlusion is a special case of irradiance. Therefore, all the observations and
assumptions we made in deriving irradiance caching also hold for ambient occlusion, and consequently
we can use irradiance caching to speed up the computation of occlusion values. The only difference is in
hemisphere sampling. While in irradiance estimation, each sample ray brought a radiance sample L t, in
ambient occlusion estimation, each sample ray brings a visibility sample—either zero or one, depending
on whether the ray hit an object or not. The rest of the algorithm, including the gradient calculation
remains the same. All we do is replace all radiance samples with the samples of visibility.
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(a) Ambient occlusion (b) Locations of ambient occlusion calculation

(c) Constant shading (d) Ambient occlusion - constant shading

Production Partners.)

Figure 3.9: Ambient occlusion (a) expresses the portion of the hemisphere above each surface point that
is occluded by other surface. The calculation of ambient occlusion values can be accelerated by irradiance
caching (b). Ambient occlusion is used to modulate the results of the local shading model, for example the

trivial constant shading shown in (c), to produce a more realistic image (d). (Model courtesy of Universal
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CHAPTER 4

Irradiance Cachingina
Complete Global Illumination
Solution

In this chapter, we treat the irradiance caching algorithm as a black box and we focus on its efficient
integration in the process of computing full global illumination solution.

Computing full global illumination in a scene involves solving the Rendering Equation 1.5 (pg. 16).
Using recursive ray tracing, the Rendering Equation can be solved through recursive evaluation of the
illumination integral:

Lo(p, wo) = Le(p, wo)+/ Li(p, o) fr(p, wi, wo) cos 6; dw;,
H+

which expresses total outgoing radiance L, (p, w,) at point p in direction @, as a sum of self-emission
L¢(p, o) and reflected radiance L. (p, w,), given by a hemispherical integral of the product of incoming
radiance L;, the BRDF f;, and the cosine term cos 6;.

Evaluating the illumination integral at a point involves obtaining the samples of incoming radiance
through ray tracing. These samples are, in turn, computed by evaluating the exact same integral, this time
at a different location in the scene (see Figure 4.1). Thus the ray tracing’s recursive nature.

Figure 4.1: Solution of the rendering equation through recursive evaluation of the illumination integral.

In image rendering, our end goal is to evaluate the illumination integral for all surface points p
visible through image pixels, with the outgoing direction w, aiming towards the camera location.
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4.1 PATH GRAMMAR

Global illumination considers any possible light path from the light sources to a given point in the scene,
and eventually the eye. We use the path grammar proposed by Heckbert [[Hec90] to identify the light

paths. Path grammar is a regular grammar consisting of symbols representing the following events:

L -light emission from the light source
D - reflection on a diffuse surface
S - reflection on a glossy/specular surface

E - light reaches the eye (i.c. the virtual camera)

A regular expression identifies a class of paths. The expressions are formed using the common notation:

ab - concatenation of @ and b

alb - union (either a or b)

a* - zero or more repetition of a
+

a - one or more repetition of a

For example, any light path from the light to the eye is given by the regular expression L(D|S)*E. Direct
illumination is given by L(D|S)E, since it is due to light that reflects exactly once on its way from the
light source to the eye.

4.2 ILLUMINATION COMPONENTS

Similar to Jensen [Jen01], we split the BRDF into three major components, each of which tells us how
light is reflected at the considered point:

fr.a ideal diffuse (or Lambertian) term,
fr.s ideal specular (or mirror) term,
fr.g glossy (or directional diffuse) term.

In addition, we split the incoming radiance L; into the following components, each describing what
interactions light has undergone on the way from the light source to the considered point:

L; ; direct illumination (radiance coming directly from light sources),
L; . caustics (radiance after one or more specular/glossy interactions with no diffuse reflection),
L; 4 smooth indirect diffuse illumination (radiance after one or more diffuse reflections).

For the purpose of rendering, we can now write the illumination integral as a sum of several
components, each of which is solved by a specialized technique. We omit the arguments p, w;, and w,
for brevity.
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L, = L.+ o self-emission, L E paths
Lii(fra + frg)cos6;dw;+ e direct illumination, L(D|S)E paths
L; fr.s cos 0; dw;+ e ideal specular reflection, L(D|S)SE paths
(Li,c + Lig) fr g cos 6 dwj+ e glossy indirect, L(D|S)SE paths

L; ¢ fr.a cos 0; dw;+ e caustics, LSTDE paths
smooth diffuse indirect, L(D|S) DDE paths

° (computed with irradiance caching)

——— — —

L g fr.a cos 0; dw;

Figure 4.2 shows a tabular organization of these illumination components.

Joa Joe s

Lu direct

ideal
L, i
i | caustics specular
glossy
smooth | indirect
L, |indirect

Ue)

Figure 4.2: Tabular organization of illumination components. Irradiance caching (IC) is used only for
the calculation of the smooth diffuse indirect illumination.

4.2.1 SMOOTH DIFFUSE INDIRECT ILLUMINATION

The only illumination component handled by irradiance caching is the smooth indirect diffuse illumina-
tion (or diffuse interreflections) (Figure 4.3 a). In practice, it means that:

(a) Irradiance caching only handles the ideal diffuse (Lambertian) component of the BRDF at the

point where illumination is computed.

(b) Only diffuse illumination is evaluated for the hit points of the secondary rays traced in irradiance
estimation. There are several good reasons for doing so:

— Irradiance caching relies on the smoothness of indirect illumination. However, specular high-
lights for the secondary rays may cause the indirect term to vary quite quickly, as exemplified
by the appearance of caustics.

— The translation gradient calculation (Section 2.1.1.2) assumes that the incoming radiance
samples L do not change with translation. This assumption does not hold if specular
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reflection is taken into account at the secondary ray hit points, which results in incorrect
gradient estimation. Irradiance interpolation with incorrect gradients usually leads to serious
visual artifacts.

The ignored non-diffuse term for hit points of secondary rays corresponds to the caustics illumi-
nation. Ignoring caustics clearly underestimates the total indirect illumination at visible surfaces but it
rarely leads to visually disturbing problems. Furthermore, caustics can be re-introduced by a specialized
algorithm, such as photon mapping, as discussed in Section 4.3.3 below.

The computation of other terms in the above breakdown of the illumination integral is independent
of irradiance caching and the algorithms used may vary from renderer to renderer. We refer to more
general books, such as [PFH04, DBB06], for more information. Nevertheless, let us briefly mention the
most common approaches.

4.2.2 IDEAL SPECULAR REFLECTION

Ray tracing is used to resolve ideal specular reflection and transmission (Figure 4.3 b). Tracing a single
reflected or transmitted ray, respectively, is sufficient. If a secondary ray generated by ideal specular
reflection or transmission hit an area light source, the light source’s self emission L, is taken into account,
in which way direct illumination is computed for the ideal specular term.

4.2.3 DIRECT ILLUMINATION

All renderers support direct illumination as it is often the most important illumination component. To
compute direct illumination at a point, we iterate over the light sources and compute a contribution from
each (Figure 4.3 d). Shadow maps [Wil78, SDO02] or shadow rays [P1104] are used to generate shadows,
i.e. to test visibility between the light source and the point being shaded. Illumination from area light
sources is often resolved by sampling, effectively replacing the light source surface by a number of point
lights [SWZ.96]. Note that direct illumination computation does not take the ideal specular component
of the BRDF into account since the probability density of a point on a light source being located exactly
in the direction of specular reflection is zero.

4.2.4 GLOSSYINDIRECT ILLUMINATION

The glossy indirect illumination (or glossy reflection), is often the trickiest term to compute, since the
BRDF properties that are classified under the label “glossy” can vary quite wildly: from sharp, mirror-like
reflections, to dull, diffuse-like reflection. Glossy in our context simply means: neither ideal diffuse nor
ideal specular.

4.2.41 BRDF Importance Sampling

For sharp, nearly specular reflection (see Figure 4.4, left), it is usually optimal to use distribution ray tracing
optimized with BRDF-proportional importance sampling. Recall that importance sampling places more
samples in directions where the BRDF has high value. Since the BRDF lobe for sharp reflections is very
narrow, we can usually get away with only a few samples.

For dull, directional-diffuse reflection, (see Figure 4.4, right) the BRDF-proportional importance
sampling is not very effective, since the BRDF lobe is quite wide. Nevertheless, distribution ray tracing
is still often used to resolve this term, although a higher number of rays have to be used to suppress
noise. However, similar to ideal diffuse surfaces, the indirect illumination on the dull glossy surfaces often
changes slowly. We can take advantage of this and use illumination interpolation similar to irradiance
caching, as described next.
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diffuse BRDF
a) Smooth diffuse indirect only

b) Ideal specular reflection
(irradiance caching)
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Figure 4.3: Specialized ray tracing techniques for the computation of various illumination components.
Smooth indirect diffuse illumination is computed by irradiance caching (a). A single secondary ray is traced
to solve specular reflections (b). Glossy reflections are usually solved using distribution ray tracing with
BRDF-proportional importance sampling (c). Direct illumination is computed by light source sampling

(d).
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fr(nwo)(wi) .f;(p,wo)((’oi)

(a) sharp glossy reflection (b) dull glossy reflection

Figure 4.4: BRDF-proportional importance sampling works well for sharp glossy reflections, corre-
sponding to narrow peaked BRDFs (a); less so for dull reflections corresponding to wide BRDF lobes
(b). The top row shows the BRDF lobe shape for one outgoing direction w, while the bottom rows shows
a corresponding rendered image. (Images courtesy of Addy Ngan.)

4.2.4.2 Fake Glossy Indirect Illumination
In this section, we describe Tabellion and Lamorlette’s [ '1.04] extension of irradiance caching that allows
to approximate indirect glossy illumination using the information gathered in irradiance calculation.

In irradiance caching, the only information that we retain from hemisphere sampling is the irradi-
ance (plus its gradients). Effectively, we are discarding all the information about directional distribution
of the incoming light. This is perfectly fine for the computation of diffuse illumination since it is view
independent. However, surface appearance due to the glossy term depends on the relation of the view-
ing direction to the direction of incoming light. Therefore, if the cached information should be used
for the computation of glossy illumination, we have to retain in the cache some information about the
directionality of incoming light.

The approach of Tabellion and Lamorlette [1'.04], described below, is extremely simple but often
produces visually plausible results. Its motivation follows from the desire to leverage the existing infras-
tructure of their rendering system, where surface reflectance properties are represented by customizable
pieces of code called shaders. On its input, a shader accepts the amount of incident light and the direction
from which the light is arriving. On its output, it returns the surface color due to this light. Contributions
from multiple lights is simply summed up.

The idea of Tabellion and Lamorlette is to convert the cached indirect illumination to a repre-
sentation which, from the point of view of the shader inputs, is no different from a simple directional
light source. The incoming radiance field is, therefore, approximated by the irradiance value along with
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dominant directions (one for each color component A as shown in Figure 4.5). It is assumed that all the
indirect light for a color component is coming fully from the corresponding dominant direction.
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Figure 4.5: The directional distribution of incoming illumination at a point is approximated by three
directional light sources, one for each color component. The light source directions correspond the

dominant directions, @] .

A dominant directions o}, A € {R, G, B} is computed during hemisphere sampling, when a new
cache record is created, as a normalized weighted average of the ray directions, with incoming radiance
as the weight:

A
Zj,k a"/,ij,k

/
W, = —————,
132k @ik L i

where j k is the sample direction and L)f’ « is the corresponding radiance sample. (Refer to Section 2.1,
pg. 19 for more details on indirect illumination sampling.) The dominant directions are stored in the
cache along with the corresponding irradiance value.

When illumination is interpolated on a surface with a glossy component, the dominant directions
are interpolated using a weighted average similar to that used for irradiance interpolation with the
difference that the directions are re-normalized after interpolation:

ZieS(p) w; (p) a’ﬁx,i
Il ZieS(P) w; (p) w/x,,' I’

Wi (p) =

where S(p) is the set of irradiance records contributing to interpolation at p and w; (p) is the interpolation
weight of record i at point p. (Refer to Section 2.2.1, pg. 27 for more details on interpolation.)

Since surface shaders are usually designed to accept radiance as the quantity describing the amount
of incident light, the interpolated irradiance value E(p) is converted to a radiance value. Assuming a
purely diffuse surface, the conversion is as follows:

E;(p)

Ly(p, ) = o nl’
A
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Now, L; (p, @}) along with the corresponding dominant direction @) can be though of as one
directional light source. Finally, the surface color due to glossy indirect illumination is computed by
invoking the surface shader with the “indirect lights” on the input.

The above techniques assumes that light is coming from a single dominant direction, which is
often not true. Still, the technique works fairly well for low-gloss surfaces with an irregular structure,
where the human visual system does not easily recognize the inaccuracy (Figure 4.6 left). For smooth
surfaces, the approximation is often obvious and even disturbing (Figure 4.6 right).

(a) Bumped surface (b) Smooth surface

Figure 4.6: The fake glossy indirect illumination works fine for surfaces with irregular structure (a),
since the human visual system is unable to tell the approximation. On smooth surfaces, though, the
approximation may be obvious.

4.2.4.3 Radiance Caching

Radiance caching, proposed by Kfivinek et al. [KGPBO05], is a more accurate algorithm for computing
indirect illumination on glossy surfaces. Similar to irradiance caching, it is based on sparse sampling
and interpolation of illumination. Since radiance caching interpolates on glossy surfaces, the directional
distribution of indirect lighting has to be stored in the cache. The representation by spherical harmonics
used in radiance caching for that purpose is more accurate than a simple approximation with directional
lights used by Tabellion and Lamorlette. We refer to the original paper or to [Kri05] for more details.

4.3 RECURSION

Hemisphere sampling in irradiance caching and in the calculation of glossy and specular components
relies on obtaining samples of indirect radiance L;. These samples are computed by tracing secondary
rays. But what calculation takes place at the hit points of these secondary rays?
The radiance samples are calculated by evaluating the illumination integral recursively for the hit
points of the secondary rays:
Li(p, ;) = Lo(sect(p, @;), —w;),
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where the function isect(p, ;) finds the nearest intersection of a ray from p in the direction w; (see
Figure 4.7).

(b) Multiple indirect bounces by (c) Multiple indirect bounces by
path tracing recursive irradiance caching

Figure 4.7: Different approaches to compute radiance samples for irradiance caching.

No matter what technique we use for the illumination integral evaluation at the secondary hit
points, we must respect a general rule of thumb: The self emission L, is ignored at the hit points of the
secondary rays generated when sampling the indirect glossy and diffuse terms (including sampling in irradiance
caching). The reason is that the hemisphere sampling is only used to compute indirect illumination. Direct
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illumination from the light sources is evaluated by a different technique. However, when sampling ideal
specular reflection and transmission, the self emission L, is 7ot ignored.

A simple option for evaluating the illumination integral for the secondary hit points is to consider
the direct illumination only, as shown in Figure 4.7(a). This yields an incomplete global illumination
solution commonly referred to a “one-bounce indirect” llumination. Tabellion and Lamorlette [1T1.04]
points out that in the context of cinematic lighting, the one-bounce indirect illumination is sufficient since
it provides the desired smooth shading and shadowing gradations; the actual lighting levels are tweaked
manually anyway. Obviously, for predictive rendering used in illumination engineering or architecture,
the one-bounce approximation is not acceptable.

If multiple bounces of indirect illumination are desirable, the radiance estimate at the hit point of
secondary rays must itself take into account indirect illumination. We have several options here:

1. use path tracing for secondary and higher-order bounces,
2. apply irradiance caching recursively,

3. look up indirect illumination from a pre-computed global illumination solution, such as a phoron

map.

4.3.1 MULTIPLE INDIRECT BOUNCES USING PATH TRACING

The simplest way to include multiple bounces of indirect illumination is to use path tracing for secondary
and higher-order bounces as shown in Figure 4.7 (b). In path-tracing, a single random ray is traced to
estimate the indirect illumination. Direct illumination uses the classic light source sampling algorithm.
For unbiased results, the recursion in path tracing may be terminated by using a technique known as
Russian roulette [[DBB06].

Path tracing is general and flexible but its main disadvantage is noise: each radiance sample com-
puted by path tracing is noisy, therefore, we need more rays in hemisphere sampling to obtain a reliable
indirect illumination estimate. This issue is critical for irradiance caching since a) the computed irradiance
is reused over a large area and b) the gradient estimation is more sensitive to noise than the irradiance
estimate itself.

4.3.2 MULTIPLE INDIRECT BOUNCES USING RECURSIVE IRRADIANCE
CACHING

Another possibility to compute multiple bounces of indirect illumination, shown in Figure 4.7 (c), is to

apply irradiance caching recursively. Recursive application of irradiance caching is used for example in the

Radiance lighting simulation system [VWL598]. It is important not to mix together the irradiance values

computed at different recursion levels. This can be achieved for example by keeping a separate irradiance

cache for each recursion level.

The error of irradiance calculation at higher recursion levels has relatively low impact on the final
image error. We can take advantage of this and use fewer rays for hemisphere sampling at higher recursion
levels and allow more error in interpolation by increasing the a value. Assuming 50% average surface
reflectivity, halving the number of rays at each recursion level and multiplying the allowed error a by V2,
the image error contributed from each level of recursion will be the same [VWWRCS88]. In practice, due to
perception effects (people are much more sensitive to “directly visible” errors), we can reduce the number
of rays for higher recursion levels even more drastically.

Figure 4.8 illustrates the behavior of recursive irradiance caching. First, the cache is empty for all
recursion levels. As soon as the first ray hits a surface, the recursion propagates to the higher levels. The
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irradiance cache is first filled for the highest level, then gradually for lower levers etc. Towards the end
of the image rendering, the recursion rarely exceeds level two since most queries can be satisfied by the
cache contents at the low recursion levels.

level 0 level 1 level 2 level 3

irradiance cache
records

rays that cause new
_—Y irradiance computation
(recursion)

ray that reuse
_____ ¥ cached irradiance
(no recursion)

Figure 4.8: Filling of caches in recursive irradiance caching causes the recursion to stop at lower and
lower levels as the computation progresses, since the rays that reuse cached irradiance do not spawn any

further rays. (Redrawn after [WWRC88].)

Compared to path tracing, recursive irradiance caching has the advantage that indirect illumination
on the higher levels is “smoothed out” by interpolation, i.e. noise-free (although biased), and, therefore,
we can get away with fewer rays for hemisphere sampling on the first level. In addition, once we have a
working implementation of irradiance caching, extension to a recursive version is simple.

4.3.3 MULTIPLE INDIRECT BOUNCES USING PHOTON MAPPING

Photon mapping [Jen01] is a two-pass technique for global illumination computation that consists of 1)
the photon tracing pass and 2) the image rendering pass (see Figure 4.9). Irradiance caching is used in
the image rendering pass.

4.3.3.1 First pass: Photon tracing
In the photon tracing pass, particles called photons are emitted from the light sources and traced through
the scene in a similar way that path tracing follows paths from the camera. Every time a photon hits a
diffuse (or dull glossy) surface, the hit position along with the photon energy is recorded in a data structure
called the photon map. At the end of the photon tracing pass, the photon map contains a representation
of global illumination in the scene.

As a matter of fact, two photon tracing passes are carried out. The output of each is stored in a
separate photon map (see Figure 4.10):

Caustics photon map. Contains only caustics illumination, that is the light that is reflected or refracted
only on specular/sharp glossy surfaces before eventually arriving on a diffuse surface (i.e. LSTD
paths). Since the caustics patterns are usually concentrated due to light focusing by specular surfaces,
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Figure 4.9: Global illumination computation with photon mapping consists of two passes: 1) the photon
tracing pass (left) and 2) the image rendering pass (right). (Redrawn after [Dut03].)

an accurate representation of caustics can be obtained with a reasonable number of photons (~

500,000).

Global photon map. Contains the representation of the overall illumination in the entire scene, including
caustics, direct, and diffuse indirect illumination, i.e. the L(S| D)™ D paths. The global map contains
a rather rough information since too many photons would be required for high accuracy.

4.3.3.2 Radiance Estimate and Photon Visualization

The fundamental operation that is used in rendering with photon maps is the radiance estimate: given a
point p and outgoing direction w,, a look up in a photon map gives us an estimate of reflected radiance
L.(p, w,) without tracing any rays. The radiance estimate is based on density estimation using N, (usually
50-250) nearest photons [Jen01]:

N
1 P

Lr(Pv Wo) = m Zl fr(P’ Wi ps wo)Achy
p:

where

w;, p 1s the incident direction of the p-th nearest photon,
A, is the flux carried by the p-th nearest photon, and
r is the distance to the farthest of the N, nearest photons (i.e. the search radius).

For our purposes, it will be sufficient to treat the radiance estimate as a black box.
The caustics map gives an accurate estimate of caustics illumination. This is why it can be directly
visualized, i.e. we can use a caustics map query for the primary ray hit points (see Figure 4.9 right).
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light source light source s f
Caustics photon map Global photon map

Figure 4.10: Two separate photon maps are created in the photon tracing pass: The causics map (left)
represents caustics illumination only (LS D paths). The global map (right) is a rough representation of
complete global illumination (L(S|D)™ D paths). (Redrawn after [[Dut03].)

The information stored in the global photon map, on the other hand, is less accurate. Using a global
photon map estimate directly for primary rays generates splotches in the images, as shown in Figure 4.11
(a). This is why radiance estimates from the global photon map are only used after one step of distribution
ray tracing (Figure 4.11 (b)). This distribution ray tracing step is often referred to as final gathering and
is usually the bottleneck of the whole rendering process. Fortunately, irradiance caching can significantly
speed up the final gathering. Let us now summarize the image rendering step of the photon mapping
algorithm.

4.3.3.3 Second pass: Image rendering

When rendering with photon mapping, we distinguish the “accurate” and the “approximate” calculation
of each illumination component. The accurate calculation is used for directly visible points, or points
after few specular reflections, or after non-specular reflection when the ray length is below a threshold (in
order to avoid errors due to photon map inaccuracy in corners). The approximate calculation is applied
at the locations accessed after a diffuse reflection.

Direct illumination uses light source sampling for accurate evaluation and a global map radiance
estimate for the approximate evaluation. Ideal specular reflection uses ray tracing (both for the accurate and
approximate evaluation). Caustics are resolved by a lookup in the caustics map for the accurate evaluation.
For the approximate evaluation, the global map radiance estimate already includes the caustics.

The smooth indirect illumination is solved by the final gathering discussed above, accelerated by
irradiance caching. The approximate evaluation of the smooth indirect illumination is, again, included in
the global photon map estimate.

The accurate evaluation of the glossy indirect term may use distribution ray tracing with BRDF-
proportional importance sampling, or alternatively some of the caching approaches described in Sec-
tion 4.2.4.2 earlier in this chapter. The global map radiance estimate may be used for the approximate
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500-5,000 rays

2\

(a) global map used for primary rays (b) final gathering with irradiance caching

Figure 4.11: Global photon map visualization. Since the representation of global illumination in the
photon map is quite rough, visualizing the global map directly for primary rays produces splotchy images
(a). This is why one step of distribution ray tracing (called final gathering) is used before the global map
lookups (b). The final gathering can be greatly accelerated by the use of irradiance caching.

evaluation but only for rather diffuse surfaces. For sharp glossy reflections, it is better to use distribution
ray tracing with BRDF-proportional sampling. (For the approximate evaluation we would usually trace
only a single random ray.)

To summarize, a single radiance estimate in the global photon map gives direct illumination,
glossy and diffuse indirect illumination, and caustics. Unfortunately, global maps contains only a rough
information, which is why it is used only for the approximate evaluation, whereas the accurate evaluation
applies a specialized technique for each component.

4.3.3.4 Faster Radiance Estimates

A photon map represents illumination as a collection of a large number of photons (in the order of
millions). The radiance estimate at a point is based on locating N, (50-250) nearest photons. This
nearest neighbor query may be rather costly, which is why alternative methods that allow faster radiance
estimates were developed (for the global photon map). Usually, they only work for Lambertian surfaces.
For example, Christensen et al. [CB04, Chr05] use so-called rick maps. Tabellion and Lamorlette [ T1.04]
use radiosity textures.
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As an optimization, Christensen [ Chr00] pre-computes the radiance estimate at photon locations
in a pre-process. To perform a radiance estimate at a point during image rendering, he simply locates
a single nearest photon and retrieves its pre-computed radiance estimate. However, the disadvantage of
this method is its view independence: the radiance estimates are pre-computed in the whole scene, even
in locations where none may be needed.

Using the lazy-evaluation scheme of irradiance caching, we can improve on Christensen’s tech-
nique. We associate an irradiance cache with the global photon map. To perform a radiance estimate at
a point, we first query the cache. If nothing is found, then we perform the actual photon map radiance
estimate and store the result in the cache. We set the “distance to surfaces” R; equal to r (i.e. the search
radius in the photon map radiance estimate). We use the approximation error a = 0.5 so that the validity
radius of a record, a R;, is half the value of r. This technique reduces the number of costly photon map
radiance estimates and performs them only where needed.

4.3.3.5 Discussion

The combination of photon mapping and irradiance caching results is an efficient method for complete
global illumination computation, since the advantages of the two algorithms are complementary. Photon
mapping requires final gathering since direct visualization of the global map is not accurate enough.
Without irradiance caching, the final gathering is slow. On the other hand, the fact that photon mapping
separates the caustics illumination makes the indirect diffuse lighting truly smooth and consequently, the
irradiance interpolation in irradiance caching can reliably produce high-quality images (see Figure 4.12).
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(a) irradiance caching, 1000 rays (b) irradiance caching, 1000 rays

(c) irradiance caching, 5000 rays (d) IC + photon mapping, 1000 rays

Figure 4.12: (a) In a purely diffuse scene, irradiance caching alone gives good results. (b) However,
making some objects specular and refractive creates caustics, which break the underlying assumption of
irradiance caching that indirect illumination changes slowly over surfaces. As a consequence irradiance
caching produces visible low-frequency noise. (c) Increasing the number of rays per hemisphere reduces
most of the low-frequency noise but the caustics are still not properly resolved due to interpolation. (d)
The combination of irradiance caching with photon mapping produces good results: irradiance caching
calculates the smooth illumination while photon mapping adds the highly varying caustics. (Images
courtesy of Henrik Wann Jensen.)
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CHAPTER 5

Irradiance Caching on Graphics
Hardware

In the classical irradiance caching algorithm, the irradiance cache is queried for each visible point in
the scene to determine if a new irradiance record should be created. When a new record is required,
the irradiance value is computed by sampling the surrounding hemisphere using ray tracing. The newly
created record is then stored in an octree, called the irradiance cache. For points nearby the record location,
the record can later be retrieved by querying the octree.

In this chapter, we consider the use of graphics hardware for fast global illumination computation
using irradiance caching. However, besides the high computational power of graphics processors, effi-
ciency is highly dependent on the compatibility of the implemented algorithm with the computational
model of the GPU (graphics processing unit). More specifically, stream processors, such as GPUs, are
massively parallel, and hence are not very efficient for dealing with the repeated branching inherent to
recursive structures such as octrees. Also, as pointers are not natively supported, the implementation of
an unbalanced octree is not straightforward. To achieve a better efficiency, we reformulate the irradiance
caching algorithm to better fit to the computational model of graphics hardware: parallel computing,
simple data structures, and limited conditional statements.

To this end, we first revisit the algorithm for irradiance interpolation within the validity areas
of irradiance records. We propose the irradiance splatting as its efficient version targeted to the GPU.
Furthermore, as GPUs do not natively support ray tracing and traversal of acceleration structures, we also
propose GPU-based hemisphere sampling for the computation of one-bounce indirect illumination.

Algorithm 13 Irradiance Caching on Graphics Hardware

Render the scene and store information about visible points:
location p, surface normal n, material reflectance py
Splat the contents of the irradiance cache
for all pixels do
if Pixel has no irradiance contribution yet then
Sample the hemisphere above point p visible through pixel
Create a new cache record
Splat the record contribution onto the irradiance splat buffer
end if
end for
Render the records onto the image plane

The GPU implementation is organized as described in Algorithm 13. The scene is first rendered
from the viewpoint to obtain information on the visible points: their location p, surface normal n and
material reflectance pg. Then, the possible existing contents of the irradiance cache are splatted onto an
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irradiance splat buffer (Section 5.1). If some new records are needed to render the image, the GPU is used
to sample the hemisphere (Section 5.3) and the new records also get stored in the cache and splatted.
The cache is finally rendered on the GPU using the irradiance splat buffer (Section 5.4).

5.1 IRRADIANCE SPLATTING

The irradiance splatting algorithm approaches the irradiance interpolation problem backwards compared
to the octree-based method: instead of starting from a point and looking for the nearby records, this
method starts from a record and accumulates its contribution to the lighting at each visible point of the
scene by splatting the record onto a splat buffer, which has the same size as the frame buffer. Each pixel
SplatBuft(x, y) of the splat buffer is a pair (E, w), where E is the sum of the weighted contributions of
the records, and w is the cumulated weight of those contributions.

The irradiance splatting (Algorithm 14) is designed for computing the contribution of an irradiance
record to the indirect lighting of visible points. The derivation starts from the equation used for irradiance
interpolation in the classic irradiance caching:

ZiES(p) Ei(p)w;i(p)
2 iesp) Wi(p)

E(p) = (5.1)

The indirect irradiance E (p) at point p is estimated as the weighted average of the contributions of nearby
irradiance records evaluated at point p. The weight allocated to a record i at point p with normal n is

defined in Section 2.2.1, pg. 27, as

! (5.2)
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where p;, n; and R; are respectively the location of record i, its normal, and the distance to surfaces visible
from p; (see Section 2.2.2, pg. 29). A user-defined value a represents the accuracy of the interpolation.
This value is used to threshold the records’ validity area: record i contributes to irradiance interpolation
at point p if and only if

w;i(p) >0 (5.3)

Substituting Equation (5.2) into Equation (5.3) and assuming a flat surface, i.e. n = n;, one can see that
a necessary condition for record i to contribute to irradiance interpolation at point p is:

lp—pill <ak; (5.4)

Therefore, Equation (5.4) guarantees that a record i cannot contribute to interpolation at any point
outside a sphere I; centered at p;, with radius r; = aR;.

Given the camera parameters, the irradiance splatting splats the sphere I; onto the image plane
(Figure 5.1). In practice, this splatting is implemented in a vertex shader (see Algorithm 15), where the
record properties are stored in the attributes of each vertex of a quadrilateral (0, 0), (1, 0), (1, 1), (0, 1).
Note that, while using the point primitive instead of a quad would be more efficient, graphics hardware
have a limited maximum point size, which may complicate the splatting of records with a large validity
area. Alternatively, geometry shaders can be used to generate the splats on a Shader Model 4-compliant
graphics hardware.
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Algorithm 14 Irradiance splatting

Leti = {p;, n;, Ei, R} be the record being splatted
Let 1; be the sphere centered at p; with radius aR; (a is the accuracy parameter)

Determine the bounding box of sphere /; on the image plane
for all pixels P(x, y) = {p, n, pq} in the bounding box do

// Evaluate weight at p
. 1 1
wl (P) < ”P;Pi Il +m a

if (w;(p) > 6) and (p; not in front of p) then
// Extrapolate irradiance of record i at point p
Ei(p) < Ei+(m; xn) -V, E; +(p—pi) Vi E;
// Accumulate into the irradiance splat buffer
SplatBuff(x, y).E += w; (p) E; (p)
SplatBuff(x, y).w += w; (p)

end if

end for

imaqe Plane

iliaye !

Figure 5.1: The sphere I; around the position p; of the record i is splatted onto the image plane. For
each point within the sphere splat, the contribution of record i is accumulated into the irradiance splat

buffer.

The vertex attributes contain some of the fields of the record: position p;, surface normal n;,
distance to surfaces R;, irradiance E; and its gradients V, E; and V,E;. For the sake of efficiency, the
inverse squared distance to surfaces, i.e. 1/ Riz, is also passed in a vertex attribute.
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Algorithm 15 Pseudo-code for irradiance splatting: Vertex Shader

uniform float a;

attribute vec4 recordPosition;

attribute vec4 recordNormal;

attribute vec3 irradiance;

attribute vec3 rotGradR, rotGradG, rotGradB;
attribute vec3 transGradR, transGradG, transGradB;
attribute float Ri;

attribute float sqInvRi;

// Compute record position in camera space
vec4 camSpacePosition = ModelViewMatrix * recordPosition;
// Compute the splatted validity sphere in camera space
vecd splatSphereBox(a*Ri, a*Ri, 0, 0);
// Compute the actual corners of the box in screen space
vec4d topRight = ProjectionMatrix * (camSpacePosition + splatSphereBox);
topRight /= topRight.w;
vec4 bottomLeft = ProjectionMatrix*(camSpacePosition - splatSphereBox) ;
bottomLeft /= bottomLeft.w;
// Infer the projected vertex position
vec2 delta = topRight.xy - bottomLeft.xy;
outputVertex = vec4(
bottomLeft.x + inputVertex.x*delta.x,
bottomLeft.y + inputVertex.y*delta.y,
0.0
1.0);
Directly pass the vertex attributes to the fragment shader

The weighting function given by Equation (5.2) is evaluated for each point visible through pixels
covered by I;. For each pixel with positive weight, the algorithm computes the contribution of record i
to the irradiance estimate (Algorithm 16).

Note that this splatting approach can be used with any weighting function containing a distance
criterion. In this chapter we focused on Ward et al.’s weighting function [\WWRC88], although the weight
proposed in [1'.04] as discussed in Section 2.2.1 could be employed as well.

52 CACHEMISS DETECTION

The rendering process of irradiance caching requires the generation of a number of irradiance records to
obtain a reasonable estimate of the indirect lighting for each point visible from the camera. Therefore,




5.2. CACHE MISS DETECTION

Algorithm 16 Pseudo-code for irradiance splatting: Fragment Shader

// Textures containing hit positions and hit normals
uniform sampler2D hitPosTex, hitNormTex;
// Target accuracy

uniform float a;

// Squared target accuracy, a?

uniform float squaredA;

// Determine the texture coordinates for fetching scene information
vec2 textureCoord = vec2(pixelCoord.x,pixelCoord.y);
// Retrieve the corresponding hit position and surface normal
vec3 hitPos = texture2D(hitPosTex, textureCoord).xyz;
vec3 hitNormal = texture2D(hitNormTex, textureCoord).xyz;
7/ Compute the contribution weight
float weight = computeWeight();
// Discard the fragment if weight is negative
if ( weight <= 0 || inFrontTest()==true ) kill;
// The record is usable for interpolation at the pixel position - compute contribution
// a) Compute the translation gradient component
vec3d diff = hitPos - recordPosition;
vec3 transGradContrib = vec3(
dot (diff, transGradR),
dot(diff, transGradG),
dot (diff, transGradB) );
/7 b) Compute the rotation gradient component
vec3 normalsCrossProduct = cross(recordNormal, hitNormal);
vec3 rotGradContrib = vec3(
dot (normalsCrossProduct, rotGradR),
dot (normalsCrossProduct, rotGradG),
dot (normalsCrossProduct, rotGradB) );
FragmentColor.rgb = weight * (
irradiance +
transGradContrib +
rotGradContrib );
FragmentColor.a = weight;

75
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even though the values of the records are view-independent, their locations are determined according to
the current viewpoint.

Usually, the irradiance cache records are stored in an octree for fast lookups. For a given pixel of the
image, a ray is traced in the scene to find the point p visible through this pixel. At this point, the octree
is queried to determine whether a new record is required. If yes, the actual indirect lighting is computed
at p: a record is created and stored in the cache. Otherwise the cache is used to compute an estimate of
the indirect lighting using interpolation. Since each visible point is processed only once, a newly created
record cannot contribute to the indirect lighting of points for which the indirect lighting has already been
computed or estimated. Therefore, unless an appropriate image traversal algorithm is employed, artifacts
may be visible (Figure 5.2(a)). The traversal typically relies on hierarchical subdivision of the image to
reduce and spread out the errors (see Section 3.1, pg. 43). Artifact-free images can only be obtained in
two passes: in the first pass, the records required for the current viewpoint are generated. In the second
pass, the scene is rendered using the contents of the cache.

On the other hand, the irradiance splatting algorithm is based on the independent splatting of
the records. The contribution of a record is splatted onto each visible point within its validity area, even
though the points have been previously checked for cache miss (Figure 5.2(b)). Therefore, this method
avoids the need of a particular image traversal algorithm without harming the rendering quality. For the
sake of efficiency and memory coherence, a linear (scanline) traversal of the image is recommended. Note
that any other image traversal algorithm could be used.

Once the algorithm has determined where a new record has to be generated, the irradiance value and
gradients must be computed by sampling the hemisphere above the new record position. The following
section details a simple method for record generation using graphics hardware in the context of one-
bounce global illumination computation.

5.3 GPU-BASED RECORD GENERATION

In the method described hereafter, the incoming irradiance and gradients associated with a record are
generated using both the GPU and CPU. First, the GPU performs the actual hemisphere sampling.
Then, the CPU computes the corresponding irradiance and gradients.

5.3.1 HEMISPHERE SAMPLING ON THE GPU

In the context of ray tracing-based global illumination, the visibility tests are generally the bottleneck
of the algorithms. However, the hemisphere sampling for irradiance estimation can be sped up by using
the GPU rasterization instead of ray tracing. In the classical hemi-cube method [CG85], five rendering
passes are necessary for full hemisphere sampling on graphics hardware. For the sake of efficiency, our
algorithm uses a one-pass method similar to [SP89, LC04]: using a virtual camera placed at the record
location, the rasterization engine samples the hemisphere above the record to compute the radiances
incoming from each direction (Figure 5.3).

A typical field of view of the virtual camera used for hemisphere sampling is twice the aperture
of the standard hemicube, that is approximately 126.87 degrees. More specifically, the side length of the
image plane (imgSize) is four times the distance of the image plane from the center of projection (near),
hence the field-of-view angle:

imgSize/2
fov = 2arctan (M) = 2arctan(2) ~ 126.87 deg.

near
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Traversal Order Traversal Order
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18plO [eslenel]

(a) Octree-based 1 pass (b) Octree-based 2-pass/Splatting 1-pass

Figure 5.2: Upper row: the irradiance records 1, 2, 3, 4 and their respective validity areas. We consider
the use of a scanline traversal of the image. In the classical, octree-based method, a newly created record
cannot contribute to pixels which have already been examined. Therefore, discontinuities appear in the
validity area of the records, yielding artifacts. Those artifacts are illustrated in the upper row: record 1
is created at the point visible through the first pixel, and used for estimating the indirect lighting in the
next 3 pixels. When record 2 is created at the point visible through the fifth pixel, its contribution is
not propagated to the previous pixels, hence creating a discontinuity. A second rendering pass is needed
to generate an image without such discontinuities. Using the irradiance splatting method, each record
contributes to all possible pixels, avoiding the need of a second rendering pass. Lower row: the indirect

lighting obtained using these methods.

However, as shown in Figure 5.4, using a single rasterization plane cannot account for the radiances
coming from grazing angles. To compensate for the incomplete hemisphere coverage, Larsen ez al. [ LLC04]
divide the obtained irradiance by the plane coverage ratio. A more accurate method consists in virtually
stretching border pixels to fill the remaining solid angle (Figure 5.4). This method generally yields more
accurate results than the approach of Larsen ez a/. (Table 5.1). Furthermore, a key aspect of this method is
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n

il

P;j

Figure 5.3: Hemisphere sampling is implemented on the GPU by placing a camera at the record location

and rendering the scene.

that the directional information of the incoming radiance remains plausible. Therefore, unlike in [LC04],
the indirect glossy lighting could also be rendered correctly if radiance caching [KGPBO05] is used.

Sampling plane coverage

To b filled To be filled

Figure 5.4: Hemisphere sampling is reduced to the rasterization of the scene geometry onto a single
sampling plane. Since this plane does not cover the whole hemisphere, we use a border compensation
method to account for the missing directions. Border pixels are virtually stretched to avoid zero lighting

coming from grazing angles, yielding more plausible results.

GPU-based hemisphere sampling requires shading of the points visible by the virtual camera,
accounting for direct lighting and shadowing. This computation is also carried out by the graphics
hardware using per-pixel shading and shadow mapping. We recommend using uniform shadow maps
[Wil78]: unlike perspective shadow maps [SID02] or shadow volumes [[Hei91], uniform shadow maps
are view-independent: in static scenes the shadow map is computed once and reused for rendering the
scene from each viewpoint. Therefore, the algorithm reuses the same shadow map to compute all the
records, hence reducing the shading cost. Furthermore, the incoming radiance values undergo averaging
to compute irradiance. This averaging blurs out aliasing artifacts of the shadow maps, hence providing
inexpensive, high quality irradiance values.

Once the hemisphere has been sampled, the algorithm computes the actual irradiance record.
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Table 5.1: RMS error of 10000 irradiance values computed in the
Sibenik Cathedral scene (Figure 5.9). The border stretching method
yields more accurate results than other approaches, while preserving the
directional information of the incoming radiance. The reference values
are computed by full hemisphere sampling using Monte Carlo integra-

tion.
Plane sampling Coverageratio Border stretching
[SP89] [LCO04] [GKBPO5]
RMS Error 18.1% 10.4% 5.8%

5.3.2 IRRADIANCE COMPUTATION

Irradiance is defined as a hemispherical integral of incoming radiance weighted by the cosine term (see
Equation (2.1) on pg. 18). We evaluate the integral numerically as a sum of incoming radiance values of
the pixels on the sampling plane, L ; i, weighted by each pixel’s solid angle, 2 t, and the corresponding
cosine term, cos 6 x:

=

—1
E =~ Lj 2jcostjy,
j=0

=

T
(=}

where N x N is the resolution of the sampling plane in pixels. The Q; x cos 0} x term in the sum can be
pre-computed to accelerate irradiance computation.

The solid angle of a pixel is approximated using an expression for the solid angle of a differential
area, i.e. dw = dA cos 6 /d?. For a camera with the field-of-view angle given by fov, the solid angle of a
pixel amounts to:

2
2 near tan % cos 0; k
Qjr= I :

pixel area

where near is the distance of the image plane from the center of projection and d ; is the distance of the
pixel center form the center of projection. In our implementation, the field-of-view of 126.87 degrees
2 .
yields the pixel area of (4 near/N)?, hence the pixel solid angle: 2 x = (4”%) 00;29”" .
Tk
As explained in the previous section, this sampling technique leaves a part of the hemisphere
unsampled. To compensate for the lack of information, the pixels located on the edge of the sampling
plane are virtually extended. Using the notation of Figure 5.6, the solid angle covered by an edge pixel
(J, k) is approximately:

Qj’dkge = Qj,k + (1 — COS emax)(¢max - ¢min) (55)
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For the pixel highlighted in Figure 5.6, the angles above are derived from the vector d from the
sampling point to the center of the pixel. To compute 6,4y, let us consider the vector dfnax from the
sampling point to the edge of the sampling plane:

domas = d + (8,0, 0). (5.6)
The angle 0,4y can then be obtained as:
d?max
Omax = ) 5.7
max = arccos 10| (5.7)
Following the same principle, we obtain @i, and @pax:
d¢m1n — d + (Bx’ _(Sy, O) (58)
d%mes = d+ (8, +8y,0). (5.9)
The angles are then:
Gmin = arctan df’”"" / df’”i" (5.10)
Omax = arctan df’”‘” / df’”“*‘. (5.11)

For the purpose of the gradient computation, we define the direction corresponding to an edge
pixel as:

edge ,edge 1 T
05595 = GO+ 3). 60 (5.12)

. d d ed . . .
By using Qj 3¢ and (9;’ P ¢;’ ¢) for edge pixels instead of the regular values, the border extension
method gets seamlessly integrated into the irradiance and gradient estimation process.

Implementation The irradiance sum can be calculated either on the GPU using automatic mipmap
generation [LC04], or using frame buffer readback and CPU-based summation (Figure 5.5). In the case
of irradiance caching, a record contains the irradiance, the rotational and translation gradients, and the
harmonic mean distance to the objects visible from the record location. These values can be stored as 22
floating-point numbers. Hence, the GPU-based summation of [LLC04] would require the computation
and storage of the mipmap levels for 6 RGBA textures. On our hardware!, this solution turns out to
be slower than a readback and CPU-based summation. Furthermore, using a PCI-Express graphics
card and the asynchronous readbacks provided by OpenGL Pixel Buffer Objects [SA08], the pipeline
stalls introduced by the readback tend to be quite small. However, due to the fast evolution of graphics
hardware, the possibility of using GPU-based summation should not be neglected when starting a new
implementation.

5.3.3 IRRADIANCE GRADIENT COMPUTATION

The gradient formulas derived in Section 2.1.1 only apply to the particular case of cosine-proportional
hemisphere sampling. Hence, we re-derive new gradient formulas suitable for our GPU hemisphere
sampling based on the projection onto a single plane.

LA PC with 3.6 GHz Pentium 4 CPU, 1 GB RAM, and nVidia Quadro FX 3400 PCI-E.
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Figure 5.5: New record computation process. The numbers show the order in which the tasks are
processed.
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Figure 5.6: Sampling hemisphere seen from above. Edge pixels of the sampling plane are virtually
extended to cover the remaining (unsampled) solid angle.
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5.3.3.1 Rotation Gradient

Similar to Section 2.1.1.1 (pg. 21), the rotation gradient is computed by summing the marginal gradient
contributions from each pixel on the sampling plane. Each contribution is given by differentiating the
cosine term cos 0; . The final rotation gradient formula is:

z
L
=
L

V, E ~ _ZLj,k Qj,k sin9j,k IA)j‘k, (5.13)
=0

~
Il
=)

~
Il

where D; 1 is a tangent-plane unit vector perpendicular to the direction d; ; through the pixel center, i.e.

0,0, 1)

A

0,0, 1) xdjx
vj,k

0.0, D) xdj i

Vik

Similar to irradiance computation, all the terms of the above sum except L ; x can be pre-computed and
pre-multiplied into a single vector for each pixel.

5.3.3.2 Translation Gradient
The translation gradient derivation proceeds along the same lines as in Appendix B. The resulting gradient
formula differs, though, because of the different hemisphere sample distribution.

First, we estimate the differential change in the solid angle of each pixel (j, k) on the sampling
plane with translation along the unit vectors x and y defining the tangent plane at the record location.
For a camera with the field of view of 126.87 degrees, we obtain:

v.Q B 400529j,k 1
ORI TN minr g o4

4cos®0; 1
VyQik =

N min{rj,k,rj,k_l}’
where:

Q; i denotes the solid angle of pixel (j, k),

Vi 2 « is the solid angle derivative with translation along x.

0; k is the polar angle of the direction corresponding to pixel (j, k) (adjusted for the edge pixels),
N X N is the resolution of the sampling plane in pixels, and

7.k is the distance to the nearest surface visible through pixel (j, k).




5.4. GLOBAL ILLUMINATION RENDERING 83

Second, the marginal change of irradiance through each pixel is given by interpolating the radiance
from neighboring pixels with the solid angle change used as a blending factor:

VxLjr = VxQji(Ljk—Lj_1x),
VyLjx = VyQi(Ljx—Ljg-1)-

Finally, we sum up the marginal contributions to get the translation gradient formula:

N—-1N-1

V,E = Z Zx VxLjx+y-VyLjx. (5.14)
j=0 k=0

Note that the gradient formulas (5.13) and (5.14) express the gradients in the local coordinate
frame at the record location. To avoid unnecessary frame transformations during irradiance interpolation,
we transform the gradients into the global coordinate frame before storing them in the cache.

5.4 GLOBALILLUMINATION RENDERING

The final image is generated in five main steps (Algorithm 17). Given a camera, Step 1 consists in
obtaining per-pixel information about visible objects: their position p, surface normal n, and reflectance
pd. This information can be efficiently generated in a single pass using Frame Buffers Objects [SA08]
and multiple render targets, hence performing vertex processing and rasterization only once.

In Steps 2 to 4, the rendering process determines where new irradiance records are necessary to
achieve the user-defined accuracy of indirect illumination computation. In these steps, the irradiance
splatting is performed using the GPU or the CPU depending on the current context: in Step 2, each
existing record (possibly computed for previous frames) is splatted onto the splat buffer using the GPU.
Step 3 consists in reading back the irradiance splat buffer into the CPU memory. In Step 4, the algorithm
iterates over the pixels of the irradiance splat buffer to determine where new irradiance records are required
(Cache miss detection). If the cumulated weight of a pixel (x, y) in the splatbuffer is zero, a new record
is generated at the corresponding position in the scene (i.e. surface point visible through pixel (x, y)).
The new record is immediately splatted by the CPU onto the irradiance splat buffer (Figure 5.7).

Once SplatBuff(x, y).w > 0 for every pixel, that is to say all pixels are covered by at least one
record, the data stored in the cache can be used to display the indirect illumination. At that time in the
algorithm, the irradiance cache stored in the CPU memory differs from the cache stored on the GPU:
the copy on the GPU represents the cache before the addition of the records described above, while the
copy on the CPU is up-to-date. The new records are therefore also added to the cache on the GPU.

Note that no spatial queries are needed in this algorithm; the cache in the CPU memory is a simple
linear list. On the GPU, this list is translated into a Vertex Buffer Object [SA08].

The last rendering step is the generation of the final image using the cache contents (Figure 5.8).
The irradiance cache on the GPU is updated, then the irradiance splatting algorithm is applied on each
newly generated cache record. Hence, the irradiance splat buffer contains the cumulated record weight
and outgoing radiance contribution of all the irradiance records. Then, the cumulated contribution at
each pixel is divided by the cumulated weight. This process yields an image of the indirect lighting in the
scene from the current point of view.

The direct lighting computation is straightforwardly carried out by the GPU, typically using per-
pixel lighting and shadow maps [\Wil78, BP04]. To reduce the aliasing of shadow maps without harming
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Algorithm 17 GPU-Based global illumination rendering with irradiance caching
/1 Step 1
Generate position, normal, and reflectance pg of objects visible through pixels (GPU)
Clear the splat buffer
/1 Step 2
for all existing cache records do
/1 The irradiance cache is empty for the first image,
/1 and non empty for subsequent images
Algorithm 14: Splat the records onto the irradiance splat buffer (GPU)
end for
/1 Step 3
Read back the irradiance splat buffer from GPU to CPU
/1 Step 4
for all pixels (x, y) in the irradiance splat buffer do
if SplatBuft(x, y).w = 0 then
Compute a new record at the corresponding hit point (GPU/CPU)
Algorithm 14: Splat the weight of the new record (CPU)
end if
end for
/] Step 5
for all cache records do
Algorithm 14: Splat all the newly generated records (GPU)
end for
/] Normalize the irradiance splat buffer
/] and compute outgoing direct and indirect radiance (GPU)
for all pixels (x, y) in the irradiance splat buffer do
SplatBuff(x, y).E /= SplatBuff(x, y).w
Lo(x,y) < DirectLighting() + SplatBuff(x, y).E - pa(x, y)/7
end for

the performance, we use high resolution shadow maps (typically 1024 x 1024) with percentage-closer
filtering [RSC87] using 16 samples. Hence, the same shadow map can be used for both the record
computation and the rendering of direct lighting in the final image. Note that higher quality images
could be obtained using view-dependent shadowing methods such as shadow volumes [[Hei91].

5.5 RESULTS

The images and timings in this section have been generated using an nVidia Quadro FX 3400 PCI-E
and a 3.6 GHz Pentium 4 CPU with 1 GB RAM.
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Figure 5.7: The irradiance cache filling process. The numbers show the steps defined in Algorithm 17.
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During this process, the irradiance cache stored on the CPU is updated whereas the copy on the GPU
remains untouched.

5.5.1 HIGH QUALITY RENDERING

This section details non-interactive high quality global illumination computation. First, we compare the
results obtained with our GPU-based renderer with the well-known Radiance software [ ] in the
context of irradiance caching.

We have compared the rendering speed of Radiance and our renderer in diffuse environments:
the Sibenik Cathedral and the Sponza Atrium (Figure 5.10). The images are rendered at a resolution
of 1000 x 1000 and use a 64 x 64 resolution for hemisphere rasterization. The results are discussed
hereafter, and summarized in Table 5.2.

a) Sibenik Cathedral. This scene contains 80K triangles, and is lit by two light sources. The image is
rendered with an accuracy parameter of 0.15. At the end of the rendering process, the irradiance
cache contains 4076 irradiance records. The irradiance splatting on the GPU is performed in
188 ms. The Radiance software rendered this scene in 7 min 5 s while our renderer took 14.3 s,

yielding a speedup of about 30 x.

b) Sponza Atrium. This scene contains 66K triangles and two light sources. Using an accuracy of 0.1,
this image is generated in 13.71 s using 4123 irradiance records. These records are splatted on the
GPU in 242.5 ms. Using the Radiance software with the same parameters, a comparable image
is obtained in 10 min 45 s. In this scene, our renderer proves about 47 x faster than the Radiance
software.
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Figure 5.8: The final rendering task. The numbers show the processing order described in Steps 4 and
5 of Algorithm 17.

Table 5.2: Rendering times obtained using radiance and irradi-
ance splatting for high quality rendering of diffuse environments.
Each image is rendered at a resolution of 1000 x 1000.

Sibenik Cathedral Sponza Atrium

Triangles 80K 66K
Accuracy a 0.15 0.1

Radiance time (s) 425 645
Our renderer time (s) 14.3 13.7
Speedup 29.7 47.1

5.5.2 INTERACTIVE GLOBAL ILLUMINATION

An important aspect of the irradiance caching algorithm is that the values of the records are view-
independent. In a static scene, records computed for a given viewpoint can be reused for other camera
positions. Therefore, the irradiance splatting approach can also be used in the context of interactive
computation of global illumination using progressive rendering. The direct lighting being computed
independently, the user can walk through the environment while the irradiance cache is filled on the fly.
Figure 5.11 shows sequential images of Sam scene (63K triangles) obtained during an interactive session
with an accuracy parameter of 0.5 and resolution of 512 x 512. The global illumination is computed
progressively, by adding at most 100 new records per frame. Our renderer provides an interactive frame
rate (between 5 and 32 fps) during this session, allowing the user to move even though the global
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(a) Radiance (b) Our renderer

Figure 5.9: The Sibenik Cathedral scene (80K triangles). The images show first bounce global illumi-
nation computed with Radiance (a) and our renderer (b) (Model courtesy of Marko Dabrovic)

illumination computation is not completed. This method has been used for interactive walkthroughs in
diffuse and glossy environments such as the Sibenik Cathedral and the Castle.

In this context, the irradiance splatting also proves useful for adjusting the value of the user-defined
accuracy parameter a. In the classical irradiance caching method, the structure of the octree used to store
the records is dependent on a. Therefore, the octree has to be regenerated for each new value of a. Using
this approach the size of each splat is computed for each frame on the GPU, hence allowing the user to
tune the value of a interactively to obtain the desired visual quality (Figure 5.12).

5.6 CONCLUSION

This chapter presented a reformulation of the irradiance caching algorithm by introducing irradiance
splatting. In this method, the validity sphere of each record is splatted onto the image plane. For each
pixel within the splatted sphere, a fragment shader computes the contribution of the record to the indirect
lighting of the corresponding point. The record weight and weighted contribution are accumulated into
the irradiance splat buffer using floating-point alpha blending. The final indirect lighting of visible points
is obtained by dividing the weighted sum of the records by the cumulated weights in a fragment shader.
Using this approach, each record contributes to all possible pixels. As a side effect this also simplifies
the cache miss detection algorithm by allowing a linear traversal of the image. By avoiding the need of
complex data structures and by extensively using the power of graphics hardware, the irradiance splatting
allows for displaying global illumination in real-time.
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(a) Sponza Atrium (b) Cornell Box

Figure 5.10: Images obtained with our renderer. The Sponza Atrium (66K triangles) is only made of
diffuse surfaces (Model courtesy of Marko Dabrovic). The Cornell Box (1K triangles) contains a glossy
back wall, which was rendered with a GPU implementation of radiance caching [KGPB05].

A major speedup factor, however, is the use of both GPU and CPU to compute the values of
the irradiance records. While the GPU performs the costly hemisphere sampling, the CPU sums up the
incoming radiances to compute the actual values and gradients of the records.

Although we describe irradiance splatting specifically in the context of a GPU implementation
of irradiance caching, the scope of the algorithm is more widespread. In particular, irradiance splatting
can be straightforwardly extended to radiance splatting for rendering global illumination in glossy en-
vironments [GKBP05]. Also, the algorithm has been described in the context of the computation of
single-bounce global illumination. However, the splatting operation can be applied recursively when
records are generated, yielding multiple layers of irradiance caches as in the Radiance software.

Furthermore, the idea of irradiance splatting can be useful in CPU implementations, too. For
example, in their adaptive radiance caching, Kfivanek et al. [KBPv06] organize all shading points for an
image into a kd-tree. The shading points to which a record could potentially contribute are located using
arange query in the kd-tree. With a kd-tree, the shading points are not restricted to correspond to image
pixels—points seen through specular reflection or transmission can also be included. The kd-tree based
splatting can be useful in relighting engines [1'.04], where the set of shading points is fixed and only
materials or lighting change during the session.



(a) Frame 0 (b) Frame 7

(c) Frame 11 (d) Frame 14

Figure 5.11: A progressive rendering session for interactive visualization of the Sam scene (63K triangles).
Our renderer computes at most 100 new records per frame, hence maintaining an interactive frame
rate (5 fps) during the global illumination computation. When the irradiance cache is full, the global
illumination solution is displayed at 32 fps.



90 CHAPTER 5. IRRADIANCE CACHING ON GRAPHICS HARDWARE

(a)a=0.5 (b) a = 0.2 using the records generated
witha = 0.5

(c)a=02

Figure 5.12: The irradiance splatting method allows for the dynamic modification of the user-defined
accuracy value a, hence easing the parameter tuning process.



CHAPTER 6

Temporal Irradiance Caching

Most global illumination methods only focus on static scenes. Accounting for animated objects and
light sources either require a recomputation of the global illumination solution for each frame or involve
complex data structures and algorithms for temporal optimization [SKDMO5]. Furthermore, global illu-
mination solutions in dynamic scenes commonly exhibit all sorts of temporal artifacts, such as flickering,
popping, etc.

This chapter describes a simple yet accurate method for the computation of global illumination
in animated environments [GBP07], where the viewer, objects and light sources move. As irradiance
caching leverages the spatial coherence of indirect lighting to reduce the cost of global illumination, we
consider an extension for sparse sampling and interpolation in time—the temporal irradiance caching.

A simple and commonly used approach to render animations with irradiance caching consists in
discarding all the cached records and starting with an empty cache at the beginning of each frame. This
indiscriminate discarding of records amounts to significant waste of computational effort. Additionally,
the resulting animation may exhibit flickering and popping artifacts since the record positions are likely
to fluctuate from frame to frame.

6.1 OVERVIEW OF TEMPORAL IRRADIANCE CACHING

The temporal irradiance caching amortizes the cost of irradiance record computation onto several frames
by performing a sparse temporal sampling and temporal interpolation of irradiance (Algorithm 18). Apart
from the improved performance, the temporal interpolation also converts the high frequency temporal
noise (i.e. the flickering artifacts) into much less noticeable low frequency temporal errors.

When a record i is created at frame n, the future incoming lighting is estimated. This estimate is
first used to compute the ratio between the current and future lighting. In the spirit of the spatial caching,
we define the temporal weighting function w! as the inverse of the temporal change. Hence the number
of frames in which i can be reused is inversely proportional to the irradiance’s temporal rate of change.

We use a fast reprojection technique for estimating the future lighting using the data sampled at
the current frame.

Finally, similar to the translation and rotation gradients used for irradiance interpolation in space,
we introduce temporal gradients for smooth temporal interpolation and extrapolation of the irradiance
in time.

To avoid possible flickering problems due to discarding a record, we follow [TMS02] and keep
track of the record locations over time. If a record located at point p; cannot be reused in current frame, a
new record is created at the same location. Note that the location of records remain constant even though
they lie on dynamic objects (Figure 6.1).

6.2 TEMPORAL WEIGHTING FUNCTION

The temporal weighting function expresses the confidence in a given record as a function of time. Similar
to spatial caching, we define the weighting function as the inverse of the temporal change €’ of irradiance
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Algorithm 18 Temporal Irradiance Caching
for all frames n do
for all existing records i do
if wf (n) is greater than a threshold then
Use i in frame n
end if

end for

for all points p where a new record is needed do
Sample the hemisphere above p
Estimate the future incoming lighting (Section 6.4)
Generate w; (Section 6.2)
Compute the temporal gradients (Section 6.3)
Store the record in the cache

end for

end for

P P

(a) Time t; (b) Time t; +n
Figure 6.1: Record i created at time #; remains at point p; even though it lays on a dynamic object.

between time ¢ and #y:
, OF
€ = ——(10) (t = to). (6.1)

The derivative %—f(to) can be approximated using estimates of irradiance at two successive times o and
11, denoted Eg and E;.

E| — Ey

=1
tEy— E

- =00 where T = E{/Ey (6.2)
1 — 1t
T—1

0 .
n—1

%

L
3 0

The time range of the animation is discretized into integer frame indices. Therefore, we always choose
t1 —to = 1,1.e. E1 and E represent the estimated irradiance at two successive frames.
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As in the spatial caching we define the temporal weighting function as the inverse of the change,
excluding the term Eq:
1

(=D —10)

where T = E1/E is named temporal irradiance ratio.

To determine the temporal validity domain of a record, the temporal weighting function is tested
against a user-defined zemporal accuracy value a'. A record i created at time fg is allowed to contribute to
the image at time 7 if

wi(t) = (6.3)

wi(t) > 1/d". (6.4)

This way, the temporal validity domain of a record depends on the local variations of irradiance in time.
Since a given record can be reused in several frames, the computational cost can be significantly reduced.

Maximum Record Lifespan  Equation (6.2) shows that if the environment remains static starting from
frame 19, we obtain t = 1. Therefore, according to Equation (6.4), w! is infinite for any frame, and hence
record i is allowed to contribute at any time ¢ > 9. However, since part of the environment may be
dynamic, the inaccuracy becomes significant as t — fy increases (Figure 6.2). This is a limitation of our
technique for estimating the temporal change of irradiance, which determines the lifespan of a record by
only considering the local change between E; and E;4 1. To overcome this problem, we use a user-defined
value 8tpqy to threshold the length of the validity domain associated with each record. If Equation (6.5)
does not hold, we decide that the record cannot be reused in frame 7.

t—19 <8, (6.5)

This reduces the risk of using obsolete records which may produce artifacts due to residual global illumi-
nation effects also known as “ghosts”. In our current implementation, this value must be user-defined by
trial and error to obtain the best results. If 8, is too low, many records may be recomputed unnecessarily.
If it is too high, the same records might be reused in too many frames and ghosting may be an issue.

6.3 TEMPORAL GRADIENTS

The temporal weighting function provides a simple and adaptive way of leveraging temporal coherence by
introducing an aging method based on the change of irradiance. Nevertheless replacing obsolete records by
new ones creates a discontinuity of irradiance, which causes visible flickering/popping artifacts. Therefore,
we introduce femporal gradients to generate a smooth and less noticeable transition between successive
records.

Temporal gradients are conceptually similar to classical irradiance gradients. Instead of representing
the irradiance change with respect to translation and rotation, those gradients represent how the irradiance
evolves over time.

In the classical irradiance caching, we use the rotation and translation gradients, Vy E; and Vp E; 1
to extrapolate irradiance of record i at a point p with normal n:

Ei(p) =Ei+ (n; xn) - VoE; + (p—pi) - Vpki,

IThe rotation and translation gradients are denoted V- E; and V; E; in other chapters of the book. We use Vy E; and Vp E; here
to avoid the double use of ¢, for translation and for time.
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Figure 6.2: When record i is created at time #;, the surrounding environment is static (r; = 1). However,
the red sphere is visible from the record i n frames later. The user-defined value §,,,, prevents the record

from contributing if n > &, , reducing the risk of using obsolete records.

where E;, p;, and n;, are the irradiance, position, and normal of record 7, respectively.

We extend this notion of gradient-based irradiance extrapolation to temporal domain by introduc-

ing the temporal irradiance gradient %E that gives us a first order approximation of irradiance change in
time. Since the rotation and translation gradients themselves also evolve in time, we additionally introduce

the temporal gradient of the rotation and translation gradients: %VnE and %VPE .

Using the temporal gradients, the contribution of record i created at time #; to the irradiance at

point p at time 7 is estimated by:
Ei(p,t) = Eai +
EEi (t—1)+
d
(n; x n) - (VaE; + EVnEi(t —1)) +
d
(p—pi) - (VpEi + gvai (t —1)),
where
0 . . .
EEi is the temporal gradient of irradiance,

Evn E; is the temporal gradient of rotation gradient, and

0
5VP E; is the temporal gradient of translation gradient.
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This formulation represents the temporal change of the irradiance around p; as 3 quantities: the
actual change of irradiance at point p;, and the change of the translation and rotation gradients over time.
Those quantities can be calculated using the estimate of future irradiance, described in the next section.
Since this method estimates the irradiance at time 7 + 1 using the information available at time ¢, we
define extrapolated temporal gradients as:

L N B+ D) - E)
; 9t ~ i\l i\l
gvnEi ~ VaEi(ti +1) — VaEi(1) (6.6)
d
EVPEi ~ VPE,' tH+1) — VPE,'(I,').

However, the extrapolated temporal gradients do not remove all the discontinuities in the anima-
tion. When a record i is replaced by record /, the accuracy of the result exhibits a possible discontinuity,
yielding some flickering artifacts. As explained in section 6.2, this problem can be avoided by keeping
track of the history of the records: when record i gets obsolete, a new record [ is created at the same
location. Since #; > t;, we can use the value of irradiance stored in / to compute inferpolated temporal
gradient for record i:

oE;
5 (Er — E)D/(h — 1)
ad
&VnEi ~ (VaE — VnEi)/(tl — 1) (67)
0
5 pEi ~ (VpEl - VpEi)/(l‘l — 1i).

The temporal gradients improve the continuity of irradiance, hence removing the flickering arti-
facts. However, the gradients only account for the first derivative of the change of incoming lighting, which
temporally smoothes the changes. While this method proves accurate in scenes with smooth changes, it
should be noted that the gradient-based temporal interpolation may introduce ghosting artifacts when
used in scenes with very sharp changes of illumination. In this case, @’ and §;,,, must be reduced to
obtain a sufficient update frequency.

Asshown in Equation (6.2), the determination of the temporal weighting function and extrapolated
gradients relies on the knowledge of the incoming radiance at the next time step, E;, 1. Since the explicit
computation of E; 41 would introduce a significant computational overhead, we propose a simple and
accurate estimation method based on reprojection.

6.4 ESTIMATING FUTURE IRRADIANCE E, 4
WEe use the reprojection and hole-filling approach proposed by Walter e# aZ. [\WWIDP99]. While Walter

et al. use reprojection for interactive visualization using ray tracing, our aim is to provide a simple and
reliable irradiance estimate at a given point at time #o + 1 by using the data acquired at time 7y only.
This estimate will be used to determine the lifespan of the records by evaluating the temporal weighting
function.

In the context of a predefined animation, the changes in the scene are known and accessible at
any time. When a record 7 is created at time 7y, the hemisphere above p; is sampled (Figure 6.3(a)) to
compute the irradiance and gradients at this point. Since the changes between times o and 7 + 1 are




96 CHAPTER 6. TEMPORAL IRRADIANCE CACHING

% e
ST ST
;/ \\ ’l/ \\
e Lot
\\_ ,/, \\_ ,//
- 17
A AR
(a) Hemisphere sampling (b) Reprojection
fs2 %3
'//"m“\\ I//’_"‘-\\
Lot S
\ / ‘\ /
~ s e v

(c) Depth test (d) Filtering (hole filling)

Figure 6.3: The hemisphere is sampled at time ¢ as in the classical irradiance caching process (a). For
each ray, the algorithm determines where each visible point will be located at time ¢ + 1 by reprojection
(b). Distant overlapping points are removed using depth test (c), while resulting holes are filled using the
farthest neighboring values (d).

known, it is possible to reproject the points visible at time #o to obtain an estimate of the visible points
at time 79 + 1 (Figure 6.3(b)). The outgoing radiance of reprojected visible points can be estimated by
accounting for the rotation and displacement of both objects and light sources. In overlapping areas, a
depth test accounts for the occlusion change (Figure 6.3(c)).

However, some parts of the estimated incoming radiance function may be unknown (holes) due
to displacement and overlapping of visible objects (Figure 6.3(d)). As proposed in [WDP99], we use a
simple hole-filling method: each hole is filled using the background values, yielding a plausible estimate
of the future indirect lighting. In practice, the neighboring pixel corresponding to the farthest object is
considered as “background”, and then directly copied into the hole. As the motion of objects tend to be
small between successive frames, a small neighborhood (typically 3 x 3) is generally sufficient for the
background search.
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As shown in Figure 6.4 and Table 6.1, the reprojection reduces the error in the estimate of the
future incoming lighting. Those errors were measured by comparing the irradiances at time 7 4+ 1 with

the irradiances estimated using records created at time 7.

100

90
80
70
60
50
40

% Records

30 Reprojection —+— -
No Reprojection T Y -
20 L L L ] |
Error (%)

97

Figure 6.4: Error between the actual lighting at # 4+ 1 and the lighting at 7 + 1 estimated with and
without reprojection. This plot represents the percentage of records for which the estimate of the future

incoming lighting is below a given RIMS error level. The reprojection reduces the overall error in the

estimate compared to a method without reprojection (i.e. where the lighting is considered temporally

constant). Errors computed using 4523 records.

6.5

Table 6.1: RMS error between the actual lighting at 7 + 1 and the
lighting at 7 + 1 estimated with and without reprojection. (Based on
4523 values).

Reprojection No Reprojection
Min 0% 0%
Max 30% 32%
Mean 2.9% 3.7%
Median 1.6% 2.4%

GPU IMPLEMENTATION

In this section, we discuss some GPU implementation details of temporal caching for increased per-
formance. First, we detail the implementation of the future incoming radiance estimate by reprojection.
Then, we describe how the GPU can be simply used in the context of irradiance cache splatting (Chapter
5) to discard useless records and avoid their replacement.
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Reprojection of Incoming Radiance  As shown in section 6.2, the computation of the temporal weighting
function and temporal gradients for a given record i require an estimate of the irradiance reaching point
pi at the next time step. This estimate is obtained through reprojection (section 6.4), provided that the
position of the objects at next time step is known. Therefore, for a given vertex v of the scene and a
given time ¢, the transformation matrix corresponding to the position and normal of v at time 7 + 1 is
known. Such matrices are available for light sources as well. Using the method described in Chapter 5,
the irradiance value of a record i can be generated by rasterizing the scene on a single plane above point
pi- The reprojection is carried out in three passes on the GPU using specific shaders.

In a first pass, during the rasterization at time ¢, the fragment shader outputs information on
the current and future lighting situations: on the one hand, the fragment shader computes the current
lighting at the points visible through each fragment. On the other hand, it also estimates the location
of each of those visible points at time 7 + 1, as well as the corresponding lighting. The generated set of
future positions and their associated radiances can then be considered as a point cloud approximating the
geometry surrounding the record location.

As mentioned above, the regular way of estimating the incoming radiance on the GPU is by
rasterizing the scene and computing the incoming radiance at each visible point. In the case of the
estimation of the future incoming radiance function, we avoid sampling the actual scene by rasterizing
the point cloud generated in the first pass instead. Therefore, in the second pass, each of those vertices is
sent to the graphics pipeline as a pixel-sized point. The result of the rasterization process is an estimate
of the incoming radiance function at time ¢ + 1. Since the size of the sampling plane is usually small
(typically 64 x 64), this process is generally much faster than resampling the whole scene.

However, the point cloud is not as well-behaved as the original, polygonal scene. In particular, the
point cloud contains exactly the same number of points as the number of pixels in the sampling image.
Therefore, while the overlapping of points can be simply solved by classical z-buffer, the resulting image
may contain holes at the location of dynamic objects (Figure 6.3(d)).

Since the time shift between two successive frames is very small, the holes also tend to be small. As
described in Section 6.4, we use a third pass to fill the holes by extrapolation using the local background
(that is, the neighboring value with the highest depth). This computation can be performed efficiently
on the GPU using the stencil buffer with an initial value of 0. During the reprojection process, each
rasterized point increments the stencil buffer. Therefore, the hole-filling algorithm must be applied only
on pixels where the stencil buffer is still 0, that is where no point have been mapped. The final result of
this algorithm is an estimate of the irradiance at time ¢ + 1, generated entirely on the GPU (Figure 6.5).
This estimate is used in the extrapolated temporal gradients and the temporal weighting function. As
shown in Equation (6.4), this latter defines a maximum value of the lifespan of a given record, and triggers
its recomputation. However, this recomputation is not always necessary.

Replacement/Deletion Method Therefore, if a record cannot contribute to the current image (i.e. out of
the view frustum, or occluded), it can be simply deleted instead of being replaced by a novel, up-to-date
record. This avoids the generation and update of a “trail” of records following dynamic objects (Figure 6.6),
hence reducing the memory and computational costs. In the context of the irradiance cache splatting
[GKBPO5] described in Chapter 5, this decision can be easily made using hardware occlusion queries:
during the last frame of the lifespan of record i, an occlusion query is issued as the record is rasterized.
In the next frame, valid records are first rendered. If a record i is now obsolete, the result of the occlusion
query is read from the GPU. If the number of covered pixels is 0, the record is discarded. Otherwise, a
new record [ is computed at location p; = p;.
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Figure 6.5: Reprojection using the GPU. The first pass samples the scene to gather the required infor-
mation. Then, the visible points are reprojected to their estimated position at next time step. During this
pass, each rendered fragment increments the stencil buffer. Finally, the holes (i.e. where the stencil value
is 0) are filled using the deepest neighboring values.

The hardware occlusion queries are very useful, but they suffer from high latency. However, in this
method, the result of a query is not needed immediately. Between the query issue and the reading of the
record coverage, the renderer renders the other records, then switches the scene to next frame and renders
valid records. In practice, the average latency is negligible (less than 0.1% of the overall computing time).
In our test scenes this method reduces the storage and computational costs by up to 25-30%.

6.6 RESULTS

This section discusses the results obtained using temporal irradiance caching and compares them with
the classical method in which a new cache is computed for each frame. This latter method is referred
to as per—frame computation in the remainder of this section. The images, videos and timings have been

generated using a 3.8GHz Pentium 4 with 2 GB RAM and an nVidia GeForce 7800 GTX 512MB. The
scene details and timings are summarized in Table 6.2.

Cube in a Box 'This very simple, diffuse scene (Figure 6.10(a)) exhibits high flickering when no temporal
gradients are used. Along with a significant speedup, the temporal caching reduces the flickering artifacts
by using extrapolated temporal gradients. The artifacts become unnoticeable with interpolated gradients.
The animations are generated using a’ = 0.05, and a maximum lifespan of 20 frames. The per-frame
computation requires 772K records to render the animation. In temporal caching, only 50K records are
needed, yielding a memory load of mere 12.4 MB. Figure 6.7 shows the accuracy values obtained with
and without temporal gradients. The remaining flickering of the extrapolated temporal gradients are due
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(b) Time 100, systematic update (c) Time 100, record removal

Figure 6.6: The sphere moves from the left to the right of the box. At time 1 (a), records (represented
by green points) are generated to compute the global illumination solution. When the sphere moves,
new records are created to evaluate the irradiance on the sphere. If every record is permanently kept
up-to-date, a “trail” of records lies on the path of the dynamic sphere (b). Using record removal, only

useful records are updated (c).

to the discontinuities of accuracy. Since our aim is high quality rendering, the following results focus on
interpolated temporal gradients which avoid discontinuities.

Moving Light A similar scene (Figure 6.10(b)) illustrates the behavior of the algorithm in animations
with dynamic light sources. The bottom of the box is tiled to highlight the changes of indirect lighting.
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Table 6.2: Test scenes and timings for temporal caching.

Scene # of #of  Per-frame Temporal Speedup
polys frames comp. caching
Cube in a Box 24 400 2048 s 269 s 7.62
Moving Light 24 400 2518 s 2650 s 0.95
Flying Kite 28K 300 5109 s 783 s 6.52
Japanese Interior | 200K | 750 13737 s 7152 s 1.90
Spheres 64K 200 3189 s 753's 4.24
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Figure 6.7: Plot of the temporal accuracy as a function of time obtained in scene Cube in a Box by
creating records at time 0 and extrapolating their value until time 19. The accuracy value at a time 7 is
obtained by computing the error between the extrapolated values and the actual lighting at time 7. At
time 20, the existing records are discarded and replaced by up-to-date records with maximum accuracy.
The temporal gradients (T'G) provide a better approximation compared to the approach without those
gradients. Using interpolated gradients, the accuracy is continuous and remains above 98%.

Due to the highly dynamic indirect lighting, the lifespan of the records is generally very short, yielding
frequent updates of irradiance values. Compared to per-frame computation, the temporal caching scheme
allows to render the animation with higher quality in a comparable time. The small overhead of temporal
radiance caching is due to the estimation of the record lifespan: in this scene, most of the records have
a lifespan of 1 frame due to the rapidly changing lighting conditions. Therefore, compared to per-frame
computation, the temporal caching tends to perform more computations, yielding a higher temporal
quality at the detriment of computational efficiency.

Flying Kite In a more complicated, textured scene (Figure 6.10(c)), the algorithm also provides a sig-
nificant quality improvement while drastically reducing the computation time. In the beginning of the
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animation the change of indirect lighting is small, and hence the records can be reused in several frames.
However, when the kite gets down, its dynamic reflection on the ceiling and wall is clearly noticeable.
Using the temporal weighting function, the global illumination solution of this zone is updated at a fast

pace, avoiding ghosts in the final image (Figure 6.8).

(a) Actual sampling frame (b) Records lifespan

Figure 6.8: When computing the global illumination solution for the current frame (a), the temporal
caching estimates where the lighting changes. The lifespan of each generated record is computed by
estimating the future change of lighting (b). Green and red colors respectively represent long and short
lifespan.

Japanese Interior In this more complex scene (Figure 6.10(d)), the glossy objects are rendered using the
radiance caching algorithm [KGPBO5]. The animation illustrates some key features of the algorithm:
dynamic nondiffuse environment and important changes of indirect lighting. In the beginning of the
animation, the scene is lit by a single, dynamic light source. In this case, temporal gradients suppress the
flickering artifacts present in per-frame computation but do not provide a significant speedup (1.25x%).
In the remainder of the animation, most of the environment is static, even though some dynamic objects
generate strong changes in the indirect illumination. The temporal gradients take advantage of this
situation by adaptively reusing records in several frames. The result is the elimination of flickering and a
significant speedup (1.9 x on average in our walkthrough animation) compared to per-frame computation.
During the generation of this animation, the average latency introduced by occlusion queries is 0.001%
of the overall rendering time.

Spheres  This scene features complex animation with 66 diffuse and glossy bouncing spheres and a
glossy back wall (Figure 6.10(e)). The temporal caching eliminates the flickering while reducing the
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computational cost by a factor of 4.24. We used a temporal accuracy value @’ = 0.05 and a maximum
record lifespan &, = 5.

Comparison with Monte Carlo Path Tracing ~ As the irradiance caching algorithms introduce low frequency
spatial errors, the temporal caching algorithm introduces low frequency temporal errors. Therefore, the
obtained images contain both spatial and temporal errors. In a sequence of 100 images of the Cube in a
Box scene, the average RMS error of the irradiance between temporal irradiance caching and the reference
solution is 0.139% (Figure 6.9). Even though the results obtained exhibit differences compared to the
reference solution, the images obtained are a reliable estimate of the global illumination solution.

(a) Reference (b) Temporal irrad. caching (c) Difference

Figure 6.9: Images obtained using Monte Carlo path tracing with 16K rays per hemisphere at each
pixel (a) and the temporal irradiance caching algorithm (b). (¢) is the difference image of (a) and (b)
multiplied by 5 to highlight the differences.

Computational Overhead of Reprojection  During the computation of a record, the temporal caching
evaluates the value of the incoming lighting for both current and next time steps. As shown in Section
6.4, the estimation of the future incoming lighting is performed by simple reprojection. Therefore, the
related computational overhead is independent of the scene geometry. In our tests, each record was
computed at resolution 64 x 64. On our system, the reprojection is performed in approximately 0.46 ms.
For comparison, the time required to compute the actual incoming lighting at a given point in our 200K
polygons scene is 4.58 ms. In this case, the overhead due to the reprojection is only 10% of the cost of the
actual hemisphere sampling. Even though this overhead is not negligible, this estimate enables us reduce
the overall rendering time by reusing the records in several frames.

6.7 CONCLUSION

This chapter presented a method for exploiting temporal coherence in the context of irradiance caching.
We introduced an approach for sparse sampling and interpolation of the incoming radiance in the temporal
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(a) Cube in a Box (b) Moving Light (c) Flying Kite

(d) Japanese Interior (e) Spheres

Figure 6.10: Images of scenes discussed in Section 6.6.

domain. We defined a temporal weighting function and temporal gradients, allowing a simple and accurate
temporal interpolation of incoming radiance values. The results show both a significant speedup and an
increased temporal quality compared to per-frame computation. Due to the sparse temporal sampling,
the irradiance values for the entire animation segment can be stored within the main memory.

This method lays the basis for simple global illumination in dynamic scenes but leaves many aspects
for future work. This would include the design of a more accurate estimation method for extrapolated
temporal gradients. Such a method will find use in on-the-fly computation of indirect lighting during
interactive sessions. Another improvement would consist in designing an efficient method for faster aging
of the records located near newly created records for which important changes have been detected. This
would avoid the need for a user-defined maximum validity time, while guaranteeing the absence of global
illumination ghosting.
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APPENDIX A

Mathematical Foundations

This appendix summarizes some basic mathematical tools useful (although not strictly required) for
understanding the material discussed in the book: calculations on the (hemi)sphere, probability, and
Monte Carlo integration.

As this chapter only provides a minimal introduction to those concepts, the reader may want to
refer to more thorough descriptions of the mathematics underlying physically-based rendering, such as
[G1a95]. Also, a collection of mathematical tools and formulas for global illumination is provided in
[Dut03].

A.1 (HEMI)SPHERES: CARE AND FEEDING

Lighting simulation involves many calculations on the sphere or hemisphere, based on the notions of
spherical coordinates and solid angles, described below.

A.1.1 SPHERICAL COORDINATES

The location of any 3D point is most often represented using its cartesian coordinates (x, y, z). However,
in the context of lighting simulation it is also useful to represent this point using its spherical coordinates

(r, 0, ¢), depicted in Figure A.1. Here
* r is the radius, i.e. the distance from the origin,
* 0 is the polar angle, measured from the z axis down, and

* ¢ is the azimuthal angle, measured from the x axis counterclockwise.

On a sphere (0, ¢) € [0, 2] x [0, 7] while on the upper hemisphere (0, ¢) € [0, 2] x [0, %]. Radius
r € [0, +o00].

A.1.2 DIRECTION

A direction in 3D can be expressed by a unit-length vector in cartesian coordinates or using a pair (6, ¢)
in spherical coordinates. The conversion from spherical to cartesian coordinates is given by:

x = sinfcos¢
y = sinfsing¢ (A1)
z = cosf.

A.1.3 SOLID ANGLE

Solid angles extend the notion of classical angles from two to three dimensions. In 2D, the angle «
subtended by an object with respect to a position p can be obtained by projecting the object onto a unit
circle centered at p. The value of «, measured in radians, is then the length of the arc covered by the
projection of the object (Figure A.2(a)). The angle subtended by a circle around p is 27 radians.
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Figure A.1: Spherical coordinates.

Following the same principle, the solid angle €2 subtended by a 3D object with respect to a position
p is obtained by projecting the 3D object onto a unit sphere centered at p (Figure A.2(b)). The unit for
solid angles is the steradian, abbreviated sr. The solid angle subtended by the entire sphere is 47 steradians.

(a) 2D angle (b) Solid angle

Figure A.2: Angle subtended by an object. In 2D (a), the angle is given by the projection of the object
onto the unit circle. In 3D (b), the solid angle is given by the projection of the object onto the unit sphere.
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A.1.4 DIFFERENTIAL SOLID ANGLE

Just like the integration of a 1D function f(x) considers infinitely small intervals dx around a value x,
the integration of a function over the (hemi)sphere considers infinitely small sets of directions around
a main direction . This set represents an infinitely small solid angle dw, called differential solid angle

(Figure A.3).

kZ

v

Figure A.3: Differential solid angle.

A.1.5 SPHERICAL INTEGRATION

The integral of a spherical function f over all the directions on the unit sphere is written as:

If:/Qf(a))da).

Using the Fubini’s theorem, we can change this multi-dimensional integral into two nested one-
dimensional integrals in the spherical coordinates. The relation between a differential solid angle and
differential spherical coordinates is:

dw = sinf d6 d¢.

Then the integral becomes:
2 T
If:/ f 0, ¢)sin6 do de.
¢$=0 JO6=0

For an integral on the hemisphere, the upper limit for 0 is 77 /2. As an example, let us calculate the integral
of cos 0 over the upper hemisphere:

2 /2
/ cosfdw = / / cos 6 sin6 do d¢
H+ ¢=0J6=0

2w 0
= / / —tdrd¢
¢=0 Jr=1
.

cosf

subst. : sin6 do

t
dr

(A.2)



108 APPENDIXA. MATHEMATICAL FOUNDATIONS
A.2 CONTINUOUS RANDOM VARIABLES INANUTSHELL

Since the Monte Carlo integration, described in the next section, is based on probabilities, we review
some terms and ideas from the probability theory assuming the reader has a basic knowledge on this topic.
For a more complete introduction to probability, the reader may refer to a textbook such as [Ros06].

A.2.1 RANDOM VARIABLES AND PROBABILITY DENSITY FUNCTIONS
A continuous random variable X is a random value drawn from a domain Dx. As an example, consider
shooting on a target. The distance of the hit from the target center is our continuous random variable.
The domain Dy would be an interval of real numbers starting from zero and going to some maximum
distance, Dx = [0, dyax]. The distance for one shot is a realization, or an observed value of the random
variable.

The probability density function, or PDF, px : Dx — R™ tells us how probable are different ob-
served values of a random variable. (R denotes non-negative real numbers.) More precisely, for a 1D
random variable, the integral

B
/ px(x)dx = Pr(X € [o, B]),

gives us the probability that the observed value is between o and f. For a multi-dimensional random
variable, we integrate over a subdomain of Dy.

It directly follows that the probability of a fixed single value is zero. This may be strange at the first
sight. If we shoot at a target, the hit is certainly at some particular distance, so how can the probability
of this happening be zero? Well, this is actually not what we mean. What we say is that if we picked a
certain distance d a priori and then asked someone to shoot, the probability that the actual distance will
be equal to what we picked before is zero. This property of continuous random variables has important
consequences in lighting simulation for some singular cases, such as point light sources and ideal specular
(mirror) reflection.

A PDF always integrates to 1 over the entire domain

/ px(x)dx =1,
Dx

since an observed value will certainly lie in Dy.

A.2.2 EXPECTED VALUE AND VARIANCE

The expected value of a continuous random variable X, denoted E[X], is given by
E[X] = / x p(x) dx. (A.3)
Dx

Suppose we transform the random variable by a function f : Dx — R, i.e. we pass every observed value
of X through f.Then, the expected value of the transformed random variable is:

E[f(X)] =/D J ) p(x) dx. (A.4)

The wvariance of a random variable is the expected deviation from the expected value:

VIX] E[(X — E[X])]

E[X?] — E*[X).
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(To derive the latter expression, we use E[(X — E[X]?] = E[X?] —2E[XE[X]] + E2[X]. Using the
fact that E[aX] = a E[X] and rearranging gives the desired form.)
The standard deviation of a random variable is the square root of its variance:

o[X]=VVI[X].

A.3 MONTE CARLO INTEGRATION INANUTSHELL

Lighting simulation involves the integration of functions which are not defined analytically, such as
the incoming radiance at a point as a function of the direction w;. Therefore, the integration has to
be performed numerically. Monte Carlo integration estimates the value of an integral by evaluating
the integrand at a set of randomly selected points in the integration domain. Unlike finite elements,
this numerical method has the advantage of allowing the integration of functions irrespective of their
dimensionality or continuity properties.

A.3.1 MONTE CARLO ESTIMATORS
A Monte Carlo estimator is the core of Monte Carlo integration. Consider the integration of a function
f(x) over a domain D:

I=/ f(x)dx.
D

Given a set of N independent random variables X, ..., Xy identically distributed on D, with the
associated probability density function p(x), a Monte Carlo estimator for I is:

N
JX
=% X

Estimator Unbiasedness 1f p(x) # 0 whenever f(x) # 0, the expected value of the above estimator is
equal to the value of the integral itself:

R 1 & X;
= o]
Jfx)
= = 22 px)dx
NIX:/ p(X) P&

D

E[l]=1. (A.5)

In short

An estimator for which Equation (A.5) holds is called unbiased. In general, the quantity |E[I]— 1] is
called the &ias. The bias of an unbiased estimator is zero.

Notice that we estimate the integral by evaluating the integrand at a number of randomly placed
points. Each of these evaluations is called a sample of the integrand.
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Estimator Variance As the value of I is computed using a limited number of samples, we expect some
error in the result. For an unbiased estimator, there is no systematic error and the only error is due to the
estimator variance. More precisely, the error is proportional to the standard deviation, o[I]. It is natural
to expect more accurate results for an increased number of samples. To analyze the error in terms of the
number of samples, let us derive the expression for the estimator variance [Vea97].

Let Y; = f(X;)/p(X;). The estimator for I is then i= % ZlNzl Y;. The variance of a single-
sample estimate is

2

dx — 12,
p P(X)

VI|n=1]= VIYi] = E[Y}] — E*[Y1] =

since the expected value of the estimator is the integral itself, i.e. E [[1=E[Y;]=1.ForN > 1 samples,

we have
. 1 1 < 1
viul=v NZZ,:1 e Zi:IV[ il=yvinl

(We used the following identities: V[aX] = a?V[X], and V[3_ X;]1 = Y V[X;] for X; independent.)
In other words, variance decreases linearly with the number of samples, and #he standard deviation, i.e.
the error, decreases with the square root of N. To decrease the error twice, we have to use four times more
samples. Other techniques, such as stratification or importance sampling, can reduce estimator variance
without the cost of additional samples.

A.3.2 IMPORTANCE SAMPLING: A VARIANCE REDUCTION TECHNIQUE
Inlighting simulation the integrand is most often the incoming radiance function, the evaluation of which
involves costly ray tracing. Therefore, it is beneficial to seek other techniques for variance reduction than a
simple increase of the number of samples. One of the most commonly used variance reduction techniques
in lighting simulation is importance sampling.

Consider a PDF p(x) exactly proportional to the integrand f(x), i.e.

p(x) = cf (x),
where the normalization value ¢ is given by
1
= ———,
f D f (x) dx

so that the PDF integrates to 1 over the domain D. With such a PDEF, the variance of the estimator is
zero, that is to say, the estimator gives an exact result. Unfortunately, we need to know || p J () dx for this
to work, which is exactly the value of the integral that we are seeking to find.

Nevertheless, the idea of importance sampling is to use a PDF which is roughly proportional to
an a priori knowledge of the integrand. Using such a PDEF, regions with high values would be sampled
more densely, hence capturing most of the integral contributions (Figure A.4(a)).

However, note that a poor choice of the PDF may yield disastrous results as the important parts
of the integrand may be poorly sampled, or not sampled at all (Figure A.4(b)).



A.3. MONTE CARLO INTEGRATION INANUTSHELL 111

I prx) Jtx)
pex)
X - - —* —* L
(a) Good sampling strategy (b) Bad sampling strategy

Figure A.4: When integrating f(x), the PDF p(x) determines the location of the samples (red dots)
in the integration domain. When the PDF is well-chosen (a), more samples are generated in the areas
where the integrand f (x) has high values, hence reducing the variance. However, using an inappropriate

PDF may result in high variance as the sampling may miss some important peaks of the integrand (b).
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APPENDIX B

Derivation of Gradient
Formulas

This Appendix gives the derivation of formulas for rotation and translation gradients introduced in
Section 2.1.1.

B.1 ROTATION GRADIENT DERIVATION

The rotation gradient is estimated from the incoming radiance samples L x and their directions w; r
used to estimate a new irradiance value at a point. The idea is to compute the contribution to the gradient
for each sample separately and then sum the contributions weighted by the incoming radiance to get the
resulting gradient estimate. To compute the contribution of one sample, we examine how the cosine term
changes with the rotation around a base-plane vector v perpendicular to the sample cell center projected
to the base plane, as shown in Figure 2.5, pg. 23. The cosine factor change is given by its derivative with
respect to 6, i.e. —sin6);.

Since we are using the same set of radiance samples, the general form of the Monte Carlo estimator
for the rotation gradient is nearly identical to the estimator for irradiance:

| N-lM-d
V,E~ — —g .
MN ik
=0 j=o P
The samples of the integrand g are given by
gjk = —sind;L; vy .

Since the samples are still distributed proportionally to the cosine term, the PDF is

This yields the final rotation gradient estimator (2.4).

B.2 TRANSLATION GRADIENT DERIVATION

Our approach to estimating translation gradient is similar to the procedure we use to estimate the rotation
gradient: first we calculate the contribution to the gradient for each hemisphere cell individually and then
we sum up the contributions to get the total gradient estimate. The notation used for gradient estimation
is illustrated in Figure 2.5 and summarized on page 23.
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The stratified sampling strategy used in the irradiance estimator (2.2) divides the hemisphere into
cells of solid angle (or area on the unit hemisphere), given by

Ajr = dw
Qj’k
P+ Oy
= / / sin6 df d¢,
Gr_ J0;_
= (cosf;_ —cosb;, ), — P ). (B.1)

To estimate the translation gradient for cell (j, k), we observe how the cell area changes with
respect to the displacement of the hemisphere center along two near perpendicular vectors, u and vi_
(see Figure 2.5). The displacement along ug causes a shift of the wall separating the considered cell
(J, k) and its neighboring cell (j — 1, k). The induced change of the cell area is given by the directional
derivative Vy, A ¢ (i.e. a scalar derivative of A ; with translation along uy). We apply the chain rule to
find this derivative:

Ak min{r;, 7,
20,

SO0 in6; (r. — i)
= ——————— Smmvu;_(Qk, — Pk_
min{rj i, rj—1k} I
2w cosf;_sin6;_

VukAj,k = Vu,{ejf-

N min{rj,k, rj_l’k} ’

uk ‘_
The derivative dA;/30;_ =sin6; (¢r, — ¢ ) follows directly from Equation (B.1). The
derivative Vy,6; = —cos@;_/min{r;,rj—1} can be derived by analyzing the geometry of the

hemisphere cross-section viewed from a direction perpendicular to ug, as shown above. Here, r; «
denotes the distance from the hemisphere center to the nearest surface in the sample direction (6} «, ¢} «).
It is the distance to the closer of the surfaces seen through two neighboring hemisphere cells, (j, k) and
(j — 1, k) that determines the relative movement of the boundary between the two cells. This is why we
use the min{r; s, rj—1 1} term (instead of simply taking r; x) in the estimation of the cell area change.

Doing so accounts for the changes in occlusion induced by the translation as pointed out by Ward and
Heckbert [WH92].

Similarly, the displacement along vi_ causes a shift of the wall separating the considered cell (j, k)
and its neighboring cell (j, kK — 1). Again, we use the chain rule to find the induced cell area derivative:
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§in0,, -
0A 1 min{r'ka r'k—l}
Vv, A; = V. . /> Jko T
v Ak vk_¢k_ 8¢k,
-1

= - - - (cos @, —cosb;_).
sinf; x min{r;j , rjk—1} +

The derivative dA j x /d¢r_ = (cos @, — cosb;_) follows from Equation (B.1). The directional derivative
Vv, ¢k = —1/(sin 6@ x min{r; i, rj x—1}) can be derived by looking at the hemisphere from the top, as
shown above.

The change of incoming radiance arriving at the hemisphere center through the considered cell is
given by interpolating the radiance from two neighboring cells with the area change used as a blending
factor:

Vyljce = VayAjk(Ljk—Lj-1k),
VaLlix = VyAj(Ljx—Lji-1).

The final translation gradient formula (2.5) is given by summing the marginal irradiance gradients
over all hemisphere cells, weighted by the cosine term evaluated at the cell’s boundary.

Discussion. 'The derivation of the translation gradient presented here is based on the paper [KGBP05]
by Kfivinek et al., which generalizes the original gradient derivation of Ward and Heckbert [\VWI92]. As
shown by Jarosz [Jar08], the two gradient formulas are equivalent. However, the derivation of Ward and
Heckbert, based on an analysis of the projection of hemisphere cells into the base plane, is only applicable
to cosine-proportional hemisphere sampling, as described thus far. The derivation presented here, on the
other hand, makes it possible to derive translational gradient for an arbitrary distribution of stratified
samples. We take advantage of this property to find a gradient formula in the GPU implementation of
irradiance caching (Section 5.3.3), where the sample distribution is significantly different.

Another alternative formula for translation gradient has been derived independently by Annen et
al. [AKDS04] and Ktivének et al. [KGPBO5]. Their formula has the advantage that it does not rely on
any stratification so it can be used for an arbitrary hemisphere sampling pattern, such as low-discrepancy
sequences used in quasi-Monte Carlo sampling [PH04]. However, their gradient formula does not take
occlusion into account which is why it usually produces less accurate gradient estimates.

In the gradient derivation given above, we have assumed that the incoming radiance L ; does
not change with translation of the hemisphere center. This assumption holds only if the surfaces that
contribute indirect illumination are purely diffuse. However, the assumption breaks in scenes with par-

ticipating media and glossy surfaces. This problem is addressed by Jarosz et al. in [JZ]08].
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APPENDIX C

Split-Sphere Model

This Appendix details the derivation of Equations (2.6) and (2.8) used for irradiance interpolation. Our
goal is to predict the interpolation error caused by reusing a cached value at a different location. The idea
proposed by Ward et al. [WRC88] is to derive an upper bound on that error by analyzing the worst-case
situation, i.e. an illumination environment that implies the largest possible error.

To identify the worst case situation, we make an important assumption that the environment
contributing indirect illumination does not contain any concentrated sources of illumination. Since the
light emitters (i.e. luminaires) are not accounted for in the indirect calculation, this assumption is valid
in most cases. There are some exceptions, though. An important example of concentrated illumination
are caustics. Fortunately, caustics can be factored out from the indirect illumination computation by the
use of photon mapping (see Section 4.3.3, pg. 65). Another example of concentrated sources of indirect
illumination are patches of light filtering to an otherwise dark room through a window. This case (among
others) breaks our assumption but Section 2.2.2.2 shows that an estimate of the actual illumination
gradient at a point can be used to rectify problems arising when our assumption is not valid.

Assuming no concentrated sources, the worst case illumination is given by the sp/iz sphere model
depicted in Figure C.1. The illumination environment is a sphere of radius R. Half of the sphere emits

Figure C.1: The split sphere model. Illumination is coming from a sphere of radius R; half of the sphere
emits zero radiance (black) and the other half non-zero radiance (white). A surface element is placed
at the sphere center. The split sphere model represents an environment causing the fastest change of
irradiance with translation and rotation of the surface element. Therefore, reusing the irradiance Eq from
the sphere center at a different location causes the largest possible error.
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zero radiance (black) and the other half some non-zero constant radiance (white). A surface element,
illuminated by the environment, is placed at the sphere center.

The split sphere model represents an environment causing the fastest change of irradiance with
translation and rotation of the surface element and thus results in the largest possible interpolation error
in an environment without concentrated sources of indirect illumination.

We want to estimate the error caused by reusing the irradiance Eq from the split sphere center
at another position with a different surface normal. Looking at Figure C.1, we see that the largest error
with translation arises when the surface element is shifted along the direction perpendicular to the surface
normal and to the boundary between the white and black halves of the split sphere. Rotation of the surface
element around the axis lying in the split sphere boundary and perpendicular to the surface normal causes
the largest error with rotation.

Reusing the original irradiance at a different location corresponds to the zeroth Taylor expansion of
irradiance field as a function of translation distance and rotation angle. According to the Taylor’s theorem,
the error of this approximation is bounded (up to a constant) by the first derivative (i.e. the gradient) of
the irradiance field:

e< | -x+ L -t (%)
x oE
where x and & denote the translation distance and rotation angle, respectively.

To estimate the two derivatives, dE /dx and 9 E /0§, we take advantage of the fact that irradiance
is equal to the projection of the bright part of the split sphere to the base plane. Estimating the partial
change of the projection area in terms of x gives us

3E — E 2Rox _ 40x
= O%HRZ_ OJTR.

Here, the denominator, %T[Rz, is the area of a half circle and the numerator, 2Rdx, is the area of a stripe
dx in width and 2R in length. In terms of &, the differential in the projection area is simply

In R3¢
IE = Eg2— = Egd¢.
QJTRZ

Combining the irradiance derivatives with the triangle inequality gives us the error bound for the split
sphere as:

4 Ey
€ < ——|x —xo|l + Eol&§ — &ol.
T R

The important result to notice here is that the error with respect to translation depends on the sphere
radius R (or more generally on the distance to the geometry contributing indirect illumination), whereas
the error with rotation is independent of the geometry.

Since we assume that no environment behaves worse in terms of error that the split sphere, we
can generalize the above result to estimate the relative change in irradiance for any geometry. We replace
x — xo with a distance between two points and & — & with the angle between two surface normals
(estimated, in our first-order approximation, as the sine between the two normals):

4 |lp —
e(p) < Eo (;w+ 2—zn.no), (C.2)
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where po is the surface element location, ng is the surface normal at po, Eq is the original irradiance at
po, and p, n are the location and normal of the point where the irradiance is reused. Finally, Ry is the
harmonic mean distance to surfaces visible from point po. The Aarmonic mean is used because the value
of Rg appears in the denominator, so the harmonic mean distributes the contributions to the overall error
estimate correctly.

The derived error bound is used for two purposes. First, it serves us to decide which cached values
can be used for interpolation at a point so that an error threshold is not exceeded. Second, the inverse
of the error bound, divested of the numerical constants, 4/ and +/2, which are specific to the split

sphere model, is used as the weight in the irradiance interpolation procedure described in Section 2.2.1
on page 27.
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APPENDIX D

Annotated References
D.1 PRIMARY SOURCES

The following is a list of papers that served as a primary source of information for this book.

[WRCSS] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A Ray Tracing Solution
for Diffuse Interreflection. In Proceedings of SIGGRAPH, pages 85-92, 1988.

The first paper on irradiance caching. Describes the overall algorithm (the “lazy evaluation” scheme), proposes
the split sphere model to derive the weight function and record spacing, and suggests the use of an octree to index
the cache records.

Covered in Chapter 2 and Section 4.3.2.

[WH92] Gregory ]. Ward and Paul Heckbert. Irradiance Gradients. In Proceedings of Eurographics
Workshop on Rendering, pages 85-98, Bristol, UK, May 1992.

This paper introduces the translation and rotational irradiance gradients. It describes how the gradients can be
estimated from the stratified hemisphere samples and how they are applied in interpolation to obtain smoother
indirect illumination.

Covered in Section 2.1.1. (Note that the translation gradient formulation presented in Section 2.1.1 is based
on [KGBPO5] rather than on Ward and Heckbert's paper.)

[WLS98] Greg Ward-Larson and Rob Shakespeare. Indirect Calculation. Chapter 12 in Ren-
dering with Radiance, The Art and Science of Lighting Visualization. Morgan Kaufmann Publishers,
1998.

This book chapter summarizes the contents for the previous two papers with the focus on irradiance caching
implementation in the Radiance lighting simulation system. The chapter also gives a summary of Radiance’s
parameters for irradiance caching.

Covered in Chapter 2 and Section 4.3.2.

[TLO4] Eric Tabellion and Arnauld Lamorlette. An approximate global illumination system
for computer-generated films. In Proceedings of SIGGRAPH, 2004.

The paper gives a high-level description of fools, including irradiance caching, used at PDI/Dreamworks to
support global illumination computation. Various modifications of the original irradiance caching algorithm
are described. Integration of irradiance caching in a proprietary relighting tool is also sketched.

Covered throughout Chapters 2, 3, and 4.
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[KGBPO5] Jaroslav K¥ivdnek, Pascal Gautron, Kadi Bouatouch, and Sumanta Pattanaik. Improved
radiance gradient computation. In Proceedings of SCCG, pages 149-153, 2005.

Describes a generalization of Ward and Heckberts gradient computation [IVIH92] that can be used for radiance
caching [KGPBO5]. Specifically, Ward and Heckbert's assumption of cosine-proportional hemisphere sampling
is lifted. The technique gives better results than the gradient computation described by the original radiance
caching paper [KGPBOS5] since visibility changes are taken into account.

Covered in Section 2.1.1.

[KBPZ06] Jaroslav Kiivanek, Kadi Bouatouch, Sumanta Pattanaik, and Jifi Zéra. Making Radiance
and Irradiance Caching Practical: Adaptive Caching and Neighbor Clamping. In Rendering Techniques,
Proceedings Eurographics Symposium on Rendering, 2006.

Two independent contributions are described. First a method to adapt record density to actual illumination
conditions. (This technique is somewhat similar to the irradiance caching implementation in Pixars PriVlan
described by Christensen in [KGV"08], with the difference that it works in screen space rather than parametric
surface space.) The second contribution is the neighbor clamping heuristic used to improve robustness of irradiance
caching.

Neighbor clamping heuristic described in Section 2.2.2.4. Adaptive caching not covered in the book.

[GKBPO05] Pascal Gautron, Jaroslav K¥ivinek, Kadi Bouatouch, and Sumanta Pattanaik. Radiance
cache splatting: A GPU-friendly global illumination algorithm. In Proceedings of Eurographics Symposium
on Rendering, June 2005.

The paper reformulates irradiance caching to make it amenable to GPU implementation. Octree lookups are
replaced by splatting the record contributions to the screen. GPU rasterization is used instead of hemisphere
sampling. The algorithm gives up to 40X speedup compared to Radiance and affords for interactive walk-
throughs with global illumination.

Chapter 5 is an extended version of this paper.

[GBP07] Pascal Gautron, Kadi Bouatouch, and Sumanta Pattanaik. Temporal radiance caching.
IEEE Transactions on Visualization and Computer Graphics, 13(5), 2007.

This paper deals with the problem of illumination flickering animations. In addition fo spatial interpolation,
irradiance is interpolated in time using temporal gradients. This results in a flicker—free animation computed
in shorter time than if the frames were computed independently.

Chapter 6 is an extended version of this paper.
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[KGWT08] Jaroslav Kfivinek, Pascal Gautron, Greg Ward, Henrik Wann Jensen, Eric Tabellion,
and Per Christensen. Practical global illumination with irradiance caching. In 4CM SIGGRAPH 2008

Classes, 2008.

This class is the basis of the book. However, some material in the class is not covered in the book. The class

materials are available from
www.graphics. cornell.edu/" jaroslav/papers/2008-irradiance_caching_class/.

D.2 FURTHER READING ON IRRADIANCE CACHING

The following papers are closely related to irradiance caching but are not covered in the book.

[KGPBO5] Jaroslav K¥ivinek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. Radiance
caching for efficient global illumination computation. IEEE Transactions on Visualization and Computer
Graphics, 11(5), September/October 2005.

Introduces radiance caching, an extension of irradiance caching that supports illumination interpolation on
glossy surfaces. Spherical harmonics are used to represent the directional distribution of incoming radiance at a
point. A novel gradient computation method is proposed.

Paper is briefly described in Section 4.2.4.2.

[AFOO05] Okan Arikan, David Forsyth, and James O’Brien. Fast and Detailed Approximate
Global Illumination by Irradiance Decomposition. In Proceedings of SIGGRAPH, 2005.

This paper improves the performance of irradiance caching by reducing the number of cache records (and
consequently the number of traced rays). The main idea is to divide indirect illumination into near and far
Jreld. Far field is computed with classical hemisphere sampling but the cache records can be more sparsely spaced
(because the illumination is coming from distant surfaces). Illumination due to the near field is approximated
by ignoring local visibility, which makes the computation much faster.

Not covered in the book.

[JDZ]J08] Wojciech Jarosz, Craig Donner, Matthias Zwicker, and Henrik Wann Jensen. Radiance
caching for participating media. ACM Trans. Graph. 27(1), March 2008.

In this paper, irradiance and radiance caching are applied to accelerate global illumination computation in
participating media. Gradients for single and multiple scattering terms are derived. The algorithm results in
superior quality than photon mapping and faster rendering times than path tracing.

Not covered in the book.
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[JZ]08] Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. Irradiance gradients
in the presence of participating media and occlusions. Computer Graphics Forum (Proceedings of EGSR
2008), 27(4), 2008.

This paper shows that some of the assumptions of the common irradiance gradient computation techniques
are not valid in scenes with participating media. An irradiance gradient calculation algorithm is presented
that takes into account the participating media and yields smoother interpolation. In addition to the gradients
derived in Jarosz et al.s TOG paper [[DZ]08], the gradient computation presented here takes visibility changes
into account, thereby improving interpolation quality.

Not covered in the book.

D.3 BACKGROUND ON GLOBAL ILLUMINATION

[PHO4] Matt Pharr and Greg Humphreys. Physically Based Rendering: from Theory to Imple-
mentation. Morgan Kaufmann, 2004.

An excellent introductory book for realistic image synthesis. The book is a complete guide to building a physically-
based ray tracer from scratch. It describes the background theory and also delves into the nitty-gritty implemen-
tation detatls.

[DBBO06] Philip Dutré, Kavita Bala, and Philippe Bekaert. Advanced Global Illumination. AK
Peters, second edition, 2006.

This textbook focuses on the underlying concepts of global illumination computation from a more theoretical
point of view than the PBRT book [PI04]. Some of the more recent practical global illumination algorithms
are briefly described.

[Jen01] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. AK Peters, 2001.

This book provides a detailed description of the photon mapping algorithm for global illumination computation.
Photon mapping and irradiance caching have complementary advantages and both algorithms benefit from
their combination, as described in Section 4.3.3, pg. 65.
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